Для того, чтобы разложить выражение (х - 2) ^ 3 - 27 на множители, используем формулу сокращенного умножения (a ^ 3 - b ^ 3) = (a - b) * (a ^ 2 + a * b + b ^ 2). Тогда получаем:
(х - 2) ^ 3 - 27 = (х - 2) ^ 3 - 3 ^ 3 = (x - 2 - 3) * ((x - 2) ^ 2 + 3 * (x - 20) + 3 ^ 2) = (x - 5) * (x ^ 2 - 4 * x + 4 + 3 * x - 60 + 9) = (x - 5) * (x ^ 2 - x + 4 + 9 - 60) = (x - 5) * (x ^ 2 - x + 13 - 60) =(x - 5) * (x ^ 2 - x - 47);
В итоге получили, (х - 2) ^ 3 - 27= (x - 5) * (x ^ 2 - x - 47).
ответ: (x - 5) * (x ^ 2 - x - 47).
Дано: y(x) = √(-x²+12*x-6)
Найти: Значения Х при минимальных значениях y(x).
1. Функция y(x) = √f(x) - существует при f(x) ≥ 0.
2. Находим точки f(x)=0 - под знаком радикала.
Решение.
1) f(x) = - x² + 12*x - 6 - функция под знаком корня.
2) Решаем квадратное уравнение f(x) = 0, находим дискриминант и корни уравнения.
D = 12² - 4*(-1)*(-6) = 144-24 = 120 - дискриминант.
√D = √120 = √(2²*30) = 2√30.
x₁ = 6 - √30, x₂ = 6 + √30 - корни квадратного уравнения. Получили область определения функции y(x):
X∈[x₁;x₂] - ООФ y(x). Минимальные значения функция на границах отрезка.
Ymin(x)=0 при x₁ = 6 - √30, x₂ = 6 + √30 - ответ.
Дополнительно - графики функций - в приложении.
Максимальное значение функции y(x) равно:
Ymax(6) = √30 (≈ 5,48).
2+5=7
15-6=9
5-2=3