y=n. Пусть x и y, x < у-числа, удовлетворяющие условию задачи, и-=п. X
Тогда x+y+xy+y-x+n=1521, n=1521-(2y+xy). Положительная разность двух целых чисел является числом натуральным, т.е. ne N, n>1. Так как y=nx, то получаем уравнение
2nx+nx²+n=1521 или n(x+1)²=1521=39². Отсюда n = 39 x+1
Значит x+1 есть делителем числа 39. Тогда, возможны следующие варианты: 1) x+1=1, x=0.2) x+1=3, x=2, n=13²=169, у=338. 3) x+1=13, x=12, n=9, y=108. 4) x+1=39, x=38, n=1. Случаи 2) и 4) не удовлетворяют указанным ранее условиям. А пары (2; 338) и (12; 108) дают искомый результат.
ответ:460
Двугранный угол при боковом ребре SD равен линейному углу между перпендикулярами из вершин А и С на ребро SD.
Находим длину рёбер AS = CS = √(3² + 1²) = √10.
Ребро SD = √(3² + (√2)²) = √11.
Боковые грани ASD и CSD - прямоугольные треугольники.
Перпендикуляры h к ребру SD равны h = 1*√10/√11 = √(10/11).
Угол α между перпендикулярами находим по теореме косинусов.
cos α = ((√(10/11))² + (√(10/11))² - (√2)²)/(2*(√(10/11))*(√(10/11))) = -0,1.
Угол α = arccos(-0,1) = 95,73917 градуса.
ответ: 13/cos α = 13/(-0,1) = -130.
z1 - z2 = 15 - 5i - 1 + 2i = 14 - 3i
z1*z2 = (15 - 5i)(1 + 2i) = 15 - 5i + 30i - 5i*2i = 15 + 25i + 10 = 25 + 25i
z1/z2 = (15 - 5i)/(1 + 2i) = (15 - 5i)(1 - 2i) / ((1 + 2i)(1 - 2i)) =
= (15 - 5i - 30i + 5i*2i) / (1 - 4i^2) = (15 - 10 - 35i)/(1 + 4) = 1 - 7i