В решении.
Пошаговое объяснение:
Представьте бесконечную десятичную периодическую дробь 7,1(6) в виде обыкновенной.
Чтобы обратить смешанную периодическую дробь в обыкновенную, нужно из числа, стоящего после запятой до второго периода, вычесть число, стоящее после запятой до первого периода, и эту разность сделать числителем, а в знаменатель записать цифру 9 столько раз, сколько цифр в периоде, со столькими нулями справа, сколько цифр между запятой и первым периодом.
7,1(6) = 7 ((16-1)/90) = 7 15/90.
Нужно уметь переводить обыкновенные дроби в десятичные. Это можно сделать:
1) делением числителя на знаменатель на уголок;
2) домножив числитель и знаменатель на такое число, чтобы в знаменателе получались 10, 100, 1000, ...
Можно и запомнить следующие равенства (часто используются):
1/2 = 0,5; 1/4 = 0,25; 1/8 = 0,125; 2/5 = 4/10 = 0,4.
Поэтому:
1) 8 целых 1/2 + 1 целую 2/5 = 8,5 + 1,4 = 9,9;
2) 10 целых 1/4 - 6 целых 1/5 = 10,25 - 6,2 = 4,05;
3) 11 целых 5/8 + 8 целых 101/125 = 11,625 + 8,808 = 20,433;
4) 21 целая 15/16 - 19 целых 3/125 = 21,9375 - 19,024 = 2,9135, т. к.
15/16 = 75/80 = 375/400 = 1875/2000 = 9375/10000 =0,9375.
Розумному натяк - дурному кийок.
Не знати людину - не сором, сором - не пізнавати.