М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ZinW
ZinW
17.03.2022 15:41 •  Математика

С! один сплав содержит 20% серебра, а второй содержит 50% серебра. сколько килограммов первого сплава нужно взять, чтобы получить из этих двух сплавов 30кг нового сплава, содержащего 30% серебра?

👇
Ответ:
Рома3762378433
Рома3762378433
17.03.2022
Данных не схватает укажите массу какого нибудь из двух сплавов.
4,4(14 оценок)
Открыть все ответы
Ответ:
Аартём1
Аартём1
17.03.2022
Чтобы исследовать функции на непрерывность и найти точки разрыва, мы будем следовать определенной последовательности шагов. Давайте рассмотрим каждую функцию по отдельности.

Функция f(x) = |x| - x

Шаг 1: Найдем точки разрыва, где функция может стать не непрерывной. Это могут быть точки, в которых функция не определена или где есть разрыв в графике.

Здесь функция определена для всех значений x, поскольку аргумент функции - это модуль x, который всегда неотрицателен. Таким образом, нет точек, где функция не определена.

Затем нужно проверить, существуют ли разрывы в графике функции. Для этого мы смотрим на поведение функции при x = 0. Для значений x < 0 функция равна -x - x, что равно -2x. Для значений x > 0 функция равна x - x, что равно 0. Из этого следует, что функция имеет разрыв в точке x = 0.

Шаг 2: Определение типа разрыва.

Для определения типа разрыва нужно рассмотреть поближе значения функции перед и после точки разрыва. При x < 0 значение функции равно -2x, а при x > 0 значение функции равно 0. Если рассмотреть значения функции слева и справа от точки разрыва, то можно заметить, что они не сходятся к одному и тому же числу. Таким образом, разрыв классифицируется как разрыв второго рода (или разрыв в точке).

Итак, функция f(x) = |x| - x имеет разрыв второго рода в точке x = 0.

Теперь рассмотрим вторую функцию:

Функция g(x) = sin(1/x)

Шаг 1: Найдем точки разрыва.

Функция sin(1/x) определена для всех значений x, кроме x = 0. Таким образом, функция неопределена только в точке x = 0.

Шаг 2: Определение типа разрыва.

Для определения типа разрыва нужно рассмотреть поведение функции вокруг точки разрыва. Приблизимся к точке разрыва, рассмотрев значения функции при x_b = 1/b, где b - некоторое положительное число, близкое к нулю.

Когда x_b < 0, синус принимает значения от -1 до 1, поэтому функция неограничена и осциллирует вокруг x = 0.

Когда x_b > 0, синус также принимает значения от -1 до 1, но функция имеет другое поведение. Значения функции приближаются к нулю, когда x_b стремится к нулю справа. Это можно сделать, рассмотрев предел функции:

lim (x -> 0+) sin(1/x) = 0

Таким образом, разрыв классифицируется как разрыв первого рода (или разрыв устранимый).

Итак, функция g(x) = sin(1/x) имеет разрыв первого рода в точке x = 0.

Надеюсь, это решение будет понятным и полезным для школьника. Если у вас есть другие вопросы, пожалуйста, не стесняйтесь задавать их.
4,6(35 оценок)
Ответ:
Omursinovaa03
Omursinovaa03
17.03.2022
Хорошо, давайте решим эту задачу пошагово.

Первое, что нужно сделать, это определить сохраняющуюся величину в системе. В данном случае, такой величиной является импульс. Импульс – это произведение массы тела на его скорость.

Пусть масса первого человека (70 кг) будет m1, а его скорость (жылдамдық) в начальный момент времени будет v1 (7 м/с). Тогда его импульс в начальный момент времени будет равен:

p1 = m1 * v1
p1 = 70 кг * 7 м/с
p1 = 490 кг*м/с

Теперь рассмотрим второго человека. Пусть его масса (30 кг) будет m2, а его скорость в начальный момент времени будет v2 (2 м/с). Тогда его импульс в начальный момент времени будет равен:

p2 = m2 * v2
p2 = 30 кг * 2 м/с
p2 = 60 кг*м/с

Далее, обратите внимание, что в конечном момент времени оба человека находятся на арбе, и их импульс суммируется. Пусть конечная скорость арбы будет v3.

Тогда суммарный импульс в конечный момент времени будет равен:

p3 = (m1 + m2) * v3
p3 = (70 кг + 30 кг) * v3
p3 = 100 кг * v3

Согласно закону сохранения импульса, сумма импульсов в начальный и конечный моменты времени должна быть равна:

p1 + p2 = p3
490 кг*м/с + 60 кг*м/с = 100 кг * v3
550 кг*м/с = 100 кг * v3

Теперь мы можем найти конечную скорость арбы, разделив обе части уравнения на массу арбы:

v3 = (p1 + p2) / (m1 + m2)
v3 = (550 кг*м/с) / (100 кг)
v3 = 5.5 м/с

Таким образом, арба будет двигаться со скоростью 5.5 м/с, после того как на нее запрыгнут оба человека.
4,7(70 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ