Две бригады хлопкоробов собрали вместе 20,4 ц хлопка за день . при этом первая бригада собрала на 1,52 больше второй . сколько центнеров собрала каждая бригада
1.Чтобы доказать первое утверждение составим числовое выражение согласно условиям утверждения: В этом выражении деление на повторяется, поэтому вынесем это действие за скобку. Получим такое числовое выражение: И решим его: В ответе у нас получилось целое число. Значит можно считать утверждение "если каждое из двух чисел делится на , то и их сумма делится на .
2.Для доказательства второго утверждения составим числовое выражение соответствующее условиям утверждения: Вынесем общий делитель за скобку: Решим получившееся выражение: Так как число в ответе целое можно считать утверждение "если одно из двух чисел делится на ,то их произведение делится на " доказанным.
У первого раствора конц. x%, а у второго y%. Берем 8 кг 1-го р-ра (8x/100 кг кислоты) и 2 кг 2-го р-ра (2y/100 кг). Получаем 8x/100 + 2y/100 = (8x+2y)/100 кг кислоты на 10 кг р-ра. И это 12% раствор, то есть (8x+2y)/100 = 10*12/100 8x + 2y = 120 4x + y = 60 Теперь берем по 1 кг обоих растворов (x/100 и y/100 кг кислоты) и получаем 2 кг 15% раствора, то есть 2*0,15 = 0,3 кг кислоты (x+y)/100 = 0,3 x + y = 30 Получаем простую систему { 4x + y = 60 { x + y = 30 Вычитаем из 1 уравнения 2 уравнение и получаем 3x = 30 x = 10% y = 30 - x = 30 - 10 = 20%
х (ц) - хлопка - собрала 2-я бригада
х+1,52 (ц) - хлопка собрала 1-я бригада
и.к. всего собралт 20,4 ц хлопка, составим уравнение:
х+х+1,52=20,4
2х=20,4-1,52
2х=18,88
х=18,88:2
х=9,44 (ц) - собрала 2-я бригада
9,44+1,52=10,96 (ц) - собрала 1-я бригада