М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
НатальяНОВ
НатальяНОВ
08.10.2020 09:31 •  Математика

Решите неравенство 10+4(9х+1)> 3 расположите в порядке возрастания числа: 2√10; 3√5; 6

👇
Ответ:
SMokKK
SMokKK
08.10.2020
Неравенство решила, но не уверенна, не пришлю. 
вот 2 задание:
6; 2√10; 3√5.
4,6(50 оценок)
Ответ:
солнвшко
солнвшко
08.10.2020
10+4(9х+30)>3
10+36x+120-3>0
36x+127>0
36x>-127
x>3,52
4,4(86 оценок)
Открыть все ответы
Ответ:
Аня276541
Аня276541
08.10.2020

(Метод Лагранжа).

y'+y=\cos{x};y'+y=0; \frac{dy}{dx} =-y; \frac{dy}{y}=-dx; \int{\frac{dy}{y} }=-\int{dx}; \ln|y|=-x+C;ln|y|=\ln{e^{-x}}+\ln{C}; \ln{y}=\ln{Ce^{-x}}; y=Ce^{-x}

Произвольную постоянную примем за функцию от x.

y=C(x)e^{-x}; y'=C'(x)e^{-x}-C(x)e^{-x}.

Подставим y и y' в исходное уравнение:

C'(x)e^{-x}-C(x)e^{-x}+C(x)e^{-x}=\cos{x}; C'(x)e^{-x}=\cos{x}; \frac{d(C(x))}{dx}=\frac{\cos{x}}{e^{-x}}d(C(x))=\frac{\cos{x}dx}{e^{-x}}; \int{d(C(x))=\int{\frac{\cos{x}dx}{e^{-x}}}; C(x)=\int{\frac{\cos{x}dx}{e^{-x}}};

Отдельно найдем полученный неопределенный интеграл:

\int\frac{\cos{x}dx}{e^{-x}}=\int{e^x\cos{x}}dx;int{e^x\cos{x}}dx=\left[u=e^x; du=e^xdx\atop dv=\cos{x}dx;v=\sin{x}\right]=e^x\sin{x}-\int{e^x\sin{x}dx.}int{e^x\sin{x}dx=\left[u=e^x; du=e^xdx\atop dv=\sin{x}dx;v=-\cos{x}\right]=-e^x\cos{x}+\int{e^x\cos{x}}dx.

Отсюда получаем что:

\int{e^x\cos{x}}dx=e^x\sin{x}-(-e^x\cos{x}+\int{e^x\cos{x}dx});2\int{e^x\cos{x}}dx=e^x\sin{x}+e^x\cos{x}int{e^x\cos{x}}dx=\frac{e^x}{2}(\sin{x}+\cos{x})+C_2

Отсюда получаем что:

C(x)=\frac{e^x}{2}(\sin{x}+\cos{x})+C_2

Теперь подставим в формулу y=C(x)e^{-x}:

y=\frac{1}{e^x}\Big(\frac{e^x}{2}(\sin{x}+\cos{x})+C_2 \Big) =\frac{1}{2}(\sin{x}+\cos{x}) +e^{-x}C_2

В итоге окончательно получаем:

\boxed{y=\frac{1}{2}(\sin{x}+\cos{x})+Ce^{-x}}

(Метод Бернулли)

y'+y=\cos{x}

Пусть y=uv; y'=u'v+uv' тогда:

u'v+uv'+uv=\cos{x}; u'v+u(v'+v)=\cos{x} потребуем, чтобы v'+v=0 тогда:

\frac{dv}{dx}+u=0;\frac{dv}{v}=-dx; \int{\frac{dv}{v} }=-\int{dx};\ln{v}=-x \Rightarrow v=e^{-x}

Подставим найденное значение v в u'v+u(v'+v)=\cos{x}:

u'e^{-x}+u(e^{-x}-e^{-x})=\cos{x};u'=\frac{\cos{x}}{e^-x} \Rightarrow u=\int{e^x\cos{x}}dx

В предыдущем данный интеграл был найден методом интегрирования по частям, поэтому не будет здесь его искать а просто подставим уже найденный.

u=\frac{e^x}{2}(\sin{x}+\cos{x})+C но y=uv тогда:

y=e^{-x}(\frac{e^x}{2}(\sin{x}+\cos{x})+C )=\frac{1}{2}(\sin{x}+\cos{x})+Ce^{-x} Отсюда получаем:

\boxed{y=\frac{1}{2}(\sin{x}+\cos{x})+Ce^{-x} }

4,5(24 оценок)
Ответ:
andryushaivcheoo
andryushaivcheoo
08.10.2020

Составим множество А. Выпишем нечётные натуральные числа из отрезка от 3 до 9:

3; 5; 7; 9

Теперь возведем их в квадрат:

9; 25; 49; 81

Значит:

A=\{9;\ 25;\ 49;\ 81\}

Составим множество В. Выпишем целые числа из интервала от 3 до 10:

4; 5; 6; 7; 8; 9

Умножим их на 7:

28; 35; 42; 49; 56; 63

Значит:

B=\{28;\ 35;\ 42;\ 49;\ 56;\ 63\}

Находим пересечение множеств А и В. В пересечение попадают элементы, принадлежащие одновременно и множеству А и множеству В:

C=A\cap B=\{49\}

Находим объединение множеств А и В. В объединение попадают элементы, принадлежащие хотя бы одному из множеств А или В:

D=A\cup B=\{9;\ 25;\ 28;\ 35;\ 42;\ 49;\ 56;\ 63;\ 81\}

4,5(71 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ