3) 1/2.
Пошаговое объяснение:
Рассмотрим функцию у = 1/(х^2+ах+6).
1. График функции проходит через точку М(1;1/3), подставим её координаты в формулу:
х =1, у = 1/3, тогда
1/3 = 1/(1^2+а•1+6)
1/3 = 1/(7+а)
7+а = 3
а=7-3
а=4,
формула примет вид
у = 1/(х^2+4х+6).
2. Правая часть равенства - дробь, числитель которой не меняется, именно поэтому значение дроби будет наибольшим, когда знаменатель является наименьшим. (Например, 7>3, но 1/7 < 1/3).
Найдём наименьшее значение квадратного трёхчлена х^2+4х+6. Сделать это можно двумя
Рассмотрим функцию g(x) = х^2+4х+6. Её графиком является парабола, ветви которой направлены вверх, т.к. а=1, 1>0. Такая функция достигает своего наименьшего значения в вершине параболы.
х вершины = -b/(2a) = - 4/2 = -2.
y вершины = (-2)^2+4•(-2)+6 = 4-8+6=2.
2 - наименьшее значение функции g(x), наименьшее значение квадратного трёхчлена.
х^2+4х+6 = х^2+4х+4+2 = (х+2)^2 +2.
(х+2)^2 неотрицательно при любых значениях х, т.е. наименьшее значение этого слагаемого равно нулю. Тогда наименьшее значение суммы (х+2)^2 +2 равно 0+2=2. 2 - наименьшее значение квадратного трёхчлена.
3. Итак, в дроби 1/(х^2+4х+6). наименьшее значение знаменателя равно 2, тогда наибольшее значение самой дроби равно 1/2.
Наибольшее значение функции у = 1/(х^2+4х+6) равно 1/2.
Nicht alle wissen,dass es in Kirow viele Museen gibt.
Mein Freund fragt,wann Kirow gegründet wurde.
Ich bin nicht sicher,ob die Kinder mit dem Taxi gefahren sind.
Frage,wo sich in der Nähe eine Apotheke befindet.
Es ist bekannt,dass man am Straßenübergang die Straße überqueren muss.