В решении.
Пошаговое объяснение:
Решить уравнение:
(11*(4х + 14))/3 - 2*(3х - 1) = (5 - 3х)/2
Умножить уравнение (все части) на 6, чтобы избавиться от дробного выражения:
2 * (11 * (4х + 14)) - 6 * (2 * (3х - 1) = 3 * (5 - 3х)
Раскрыть скобки:
2 * (44х + 154) - 6 * (6х - 2) = 3 * (5 - 3х)
Раскрыть скобки:
88х + 308 - 36х + 12 = 15 - 9х
Привести подобные члены:
52х + 9х = 15 - 320
61х = -305
х = -305/61
х = -5.
Проверка путём подстановки вычисленного значения х в уравнение показала, что данное решение удовлетворяет данному уравнению.
Пусть скорость автобуса x км/ч, тогда скорость грузовой машины (x+17) км/ч. Скорость сближения x+x+17 = 2x+17 км/ч. Встретились через 3 часа, то есть
(2x+17)\cdot3=453\\2x+17=151\\2x=134\\x=67
Скорость автобуса 67 км/ч, грузовой машины 67+17 = 84 км/ч система уравнений:
Пусть скорость автобуса x км/ч, скорость грузовой машины y км/ч.
Скорость грузовой машины на 17 км/ч больше скорости автобуса, т.е. y-x = 17.
Встретились через 3 часа, то есть (x+y)*3 = 453.
Составим и решим систему уравнений
\begin{cases}y-x=17\\(x+y)\cdot3=453\end{cases}\Rightarrow\begin{cases}x=y-17\\(y-17+y)\cdot3=453\end{cases}(y-17+y)\cdot3=453\\2y-17=151\\2y=168\\y=84\\\begin{cases}x=84-17=67\\y=84\end{cases}
Скорость автобуса 67 км/ч, грузовой машины 84 км/ч.
Пошаговое объяснение: