Пошаговое объяснение:
Перша автостоянка х машин.
Друга автостоянка (х * 3) машин.
З другої автостоянки перевели 12 автомобілів на першу, стало порівно.
Скільки машин було на кожній стоянці спочатку?
Нехай на першій автостоянці було х машин, тоді на другій автостоянці (х * 3) машин.
Коли з другої автостоянці перевели 12 автомобіля, (х * 3) – 12, на першу (х +12), то машин на стоянках стало порівну. Складемо рівняння.
(х * 3) – 12 = х +12
3х – 12 = х + 12
3х – х = 12 + 12
2х = 24
х = 24 : 2
х = 12
На першій стоянці спочатку було 12 машин.
На другій стоянці спочатку було 12 * 3 = 36 машин.
Відповідь: 1. На першій стоянці спочатку було 12 машин.
2. На другій стоянці спочатку було 36 машин.
KL линия пересечения плоскостей ABC и B1EF
B1. Проведем отрезок B1K
Из прямоугольного треугольника KBB1 найдем B1K
Сторона B1B=a
Сторона KB=3a/4 (сторона AB равна 4 частям, а KB составляет 3 части из 4)
По т.Пифагора
B1K^2=KB^2+BB1^2
B1K^2=(0,75a)^2+a^2
B1K^2=0,5625a^2+a^2
B1K^2=1,5625a^2
B1K=1,25a
B2. BCLK-прямоугольная трапеция
Проведем высоту LT=BC=a
BT=x
TK=3x-x=2x=0,5a (сторона AB равна 4 частям, а ТК составляет 2 части из 4)
Из прямоугольного треугольника TLK найдем LK
LK^2=TK^2+TL^2
LK^2=(0,5a)^2+a^2
LK^2=0,25a^2+a^2
LK^2=1,25a^2
LK=√5a/4