М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
bukshtanovich20
bukshtanovich20
14.04.2021 14:46 •  Математика

Найдите площадь круга,радиус которого 7 дм.число округлите

👇
Ответ:
SтивLan04
SтивLan04
14.04.2021
7*3.14=21.28~22  см в квадрате
ОТВЕТ:22см в квадрате                                                  
4,4(97 оценок)
Открыть все ответы
Ответ:
arakelyankrist
arakelyankrist
14.04.2021

ответНачальные данные: велосипедист двигался равномерно; S1 (начальный путь) = 40 м; t1 (начальное время движения) = 4 с; t2 (общее время движения) = 20 с.

Начальные данные: велосипедист двигался равномерно; S1 (начальный путь) = 40 м; t1 (начальное время движения) = 4 с; t2 (общее время движения) = 20 с.Путь, который проделает велосипедист, определим по формуле: S2 = V * t2 = (S1 / t1) * t2.

Начальные данные: велосипедист двигался равномерно; S1 (начальный путь) = 40 м; t1 (начальное время движения) = 4 с; t2 (общее время движения) = 20 с.Путь, который проделает велосипедист, определим по формуле: S2 = V * t2 = (S1 / t1) * t2.Вычисление: S2 = (40 / 4) * 20 = 200 м.

Начальные данные: велосипедист двигался равномерно; S1 (начальный путь) = 40 м; t1 (начальное время движения) = 4 с; t2 (общее время движения) = 20 с.Путь, который проделает велосипедист, определим по формуле: S2 = V * t2 = (S1 / t1) * t2.Вычисление: S2 = (40 / 4) * 20 = 200 м.ответ: При постоянной скорости движения велосипедист за 20 секунд проедет 200 метров.

4,6(70 оценок)
Ответ:
konovalovilya
konovalovilya
14.04.2021
Первое решение. Пусть O – середина отрезка BD. Прямая BD перпендикулярна плоскости AOA1. Следовательно, плоскости BDA1 и AOA1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA1, является высота AH прямоугольного треугольника AOA1, в котором AA1 = 1, AO = , OA1 = √6/2. Для площади S этого треугольника имеют место равенства . Откуда находим AH = √3/3

Второе решение. Пусть O – середина отрезка BD. Прямая BD перпендикулярна плоскости AOA1. Следовательно, плоскости BDA1 и AOA1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA1, является высота AH прямоугольного треугольника AOA1, в котором AA1 = 1, AO = , OA1 =√6/2 . Треугольники AOA1 иHOA подобны по трем углам. Следовательно, AA1:OA1 = AH:AO. Откуда находим AH = √3/3.

Третье решение. Пусть O – середина отрезка BD. Прямая BD перпендикулярна плоскости AOA1. Следовательно, плоскости BDA1 и AOA1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA1, является высота AH прямоугольного треугольника AOA1, в котором AA1 = 1, AO = , OA1 =√6/2 . Откуда sin угла AOA1=√6/3
и, следовательно, AH=AO* sin угла AOH=√3/3
4,4(3 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ