ответ: функция имеет минимум, равный -3/8, в точке M(1/8; 3/8; -3/8). Максимума функция не имеет.
Пошаговое объяснение:
1. Находим первые и вторые частные производные и после приведения подобных членов получаем:
du/dx=6*x-4*y-2*z, du/dy=-4*x+10*y+6*z-1, du/dz=-2*x+6*y+8*z+1, d²u/dx²=2, d²u/dy²=10, d²u/dz²=8, d²u/dxdy=-4, d²u/dydx=-4, d²u/dxdz=-2, d²u/dzdx=-2, d²u/dydz=6, d²u/dzdy=6.
2. Приравнивая нулю первые частные производные, получаем систему уравнений:
6*x-4*y-2*z=0
-4*x+10*y+6*z=1
-2*x+6*y+8*z=-1
Решая её, находим x=1/8, y=3/8, z=-3/8. Таким образом, найдены координаты единственной стационарной точки M (1/8; 3/8; -3/8).
3. Вычисляем значения вторых частных производных в стационарной точке:
d²u/dx²(M)=a11=6, d²u/dxdy(M)=a12=-4, d²u/dxdz(M)=a13=-2, d²u/dydx(M)=a21=-4, d²u/dy²(M)=a22=10, d²u/dydz(M)=a23=6, d²u/dzdx(M)=a31=-2, d²u/dzdy(M)=a32=6, d²u/dz²(M)=a33=8
4. Составляем матрицу Гессе:
H = a11 a12 a13 = 6 -4 -2
a21 a22 a23 -4 10 6
a31 a32 a33 -2 6 8
5. Составляем и вычисляем угловые миноры матрицы Гессе:
δ1 = a11 = 6, δ2 = a11 a12 = 44, δ3 = a11 a12 a13 = 192
a21 a22 a21 a22 a23
a31 a32 a33
6. Так как δ1>0, δ2>0 и δ3>0, то точка М является точкой минимума, равного u0=u(1/8; 3/8; -3/8)=-3/8.
Обозначим как X скорость третьей машины.
К моменту старта третьей машины, первая успела проехать расстояние, равное: 0,5 (ч) * 50 (км/ч) = 25 (км) , а вторая: 0,5 * 40 = 20 (км).
Расстояние между первой и третьей сокращается со скоростью X - 50 (км/ч), а между второй и третьей - со скоростью X - 40 (км/ч).
Зная скорости и начальные расстояния, найдём время встречи третьей машины с первой и второй; составим уравнение:
25/(X-50) - 20/(X-40) = 1,5 (ч) ;домножим уравнение на 2(X-40)(X-50) :
50(X-40) - 40(X-50) = 3(X-40)(X-50)
50X -2000 -40X +2000 = 3X^2 -150X -120X +6000
3X^2 - 280X + 6000 = 0
X1 = 60 (км/ч) -скорость третьей машины
X2 = 33 1/3 (км/ч) -ложный корень (т.к. по условию задачи скорость должна быть больше 50 км/ч)