1)При умножении, например, x на y, они будут называться множителями, а полученное число, допустим, z- произведение (x*y=z). При делении x на y, х будет называться делимым, у делителем, а полученное число z частным (x:y=z). 2)Сумму двух чисел можно умножить на какое-либо число двумя пусть будут числа 2,3 и 4): а) Есть выражение (2+3)*4, сначала выполняем сложение, получаем 5*4 и выполняем умножение, получаем 20. б) Воспользуемся одним из свойств умножения: (2+3)*4=2*4+3*4, отсюда получаем сумму 8 и 12, складываем их и получаем также 20. Как видите, ответ не меняется. 3) Можно воспользоваться теми же самыми какими мы пользовались в предыдущем вопросе: либо сложить и разделить полученное на 6, (т.е. 60 на 6, ответ 10), либо почленно разделить 36 на 6 и 24 на 6 и сложить полученные результаты, т.е. 6+4, также получаем 10. 4)При умножении любого числа на 0 получается 0 (17382957*0=0, 15*0=0, любое число), при умножении любого числа на 1 получается это же самое число ( 6*1=6, 150*1=150, 0*1=0) 5) При делении на 1, также как и при умножении, всегда выходит то же самое число, при делении 0 на любое число выходит 0 (но на 0 делить нельзя). 6) В таком случае останется то число, на которое не делили. 6*5:6= 1*5=5. 7) Проверить умножение можно разделив произведение на любой из множителей. Частное проверяется умножением частного на делитель, либо делением делимого на частное.
7y+21-2y+4>109y+2
5y-10y>2-25
-5y>-23
y<23/5
y<4,6
b) 6(3+5y)-(2+7y)<5(4+3y)
18+30y-2-7y<20+15t
23y-15y<20+2-18
8y<4
y<8/4
y<1/2
y<0.5
d)4(3y-1)-3(y-1)>2(3+y)
12y-4-3y+3>6+2y
9y-2y>6+1
7y>7
y>7