От причала а до причалп в и обратно туристы плыли по реке на лодке.на весь путь они затратилт 3ч 30 минут . скорость лодки в стоячей воде 5км/ч, а скорость течения реки 2км/ч.оцените расстояние от причала а до причала в
По течению шли со скоростью 5+2 = 7 км/ч, против течения 5-2 = 3 км/ч. Пусть расстояние от А до В равно x. Тогда по течению дошли за x/7 часов, против течения за x/3 часов. Всего 3,5 часа, то есть
Х - скорость движения поезда по расписанию (х + 10) - скорость поезда после задержания в пути , из условия задачи имеем : 80/х - 80/(х + 10) = 16/60 , умножим левую и правую часть уравнения на 60(х + 10)*х , Получим : 80*60(х + 10) - 80*60*х = 16 *(х + 10)*х 4800х + 48000 - 4800х =16х^2 +160х 16х^2 +160х - 48000= 0 х^2 +10x -3000 = 0 , Найдем дискриминант уравнения . Он равен := 10^2 - 4*1*(-3000) = 100 + 12000 = 12100 . Корень квадратный из дискриминанта равен : 110 . Найдем корни уравнения : 1-ый =(-(-10)+110)/2*1 = 120/2 = 60 ; 2-ой = (-(-10)-110) /2*1 = -100/2= - 50 . Второй корень не подходит , так как скорость не может быть меньше 0 . Корень уравнения равен : 60 км/ч - скорость поезда по расписанию
Х - скорость движения поезда по расписанию (х + 10) - скорость поезда после задержания в пути , из условия задачи имеем : 80/х - 80/(х + 10) = 16/60 , умножим левую и правую часть уравнения на 60(х + 10)*х , Получим : 80*60(х + 10) - 80*60*х = 16 *(х + 10)*х 4800х + 48000 - 4800х =16х^2 +160х 16х^2 +160х - 48000= 0 х^2 +10x -3000 = 0 , Найдем дискриминант уравнения . Он равен := 10^2 - 4*1*(-3000) = 100 + 12000 = 12100 . Корень квадратный из дискриминанта равен : 110 . Найдем корни уравнения : 1-ый =(-(-10)+110)/2*1 = 120/2 = 60 ; 2-ой = (-(-10)-110) /2*1 = -100/2= - 50 . Второй корень не подходит , так как скорость не может быть меньше 0 . Корень уравнения равен : 60 км/ч - скорость поезда по расписанию