Пусть событие А — посланный сигнал будет принят. Рассмотрим гипотезы :
H_1-H
1
− связь передается сигналом А;
H_2-H
2
− связь передается сигналом B.
Условные вероятности: P(H_1)=0.8,~ P(H_2)=0.2P(H
1
)=0.8, P(H
2
)=0.2
\begin{gathered}P(A|H_1)=60\%:100\%=0.6\\ P(A|H_2)=70\%:100\%=0.7\end{gathered}
P(A∣H
1
)=60%:100%=0.6
P(A∣H
2
)=70%:100%=0.7
a) По формуле полной вероятности, вероятность того, что посланный сигнал будет принят, равна
P(A)=P(A|H_1)P(H_1)+P(A|H_2)P(H_2)=0.6\cdot 0.8+0.7\cdot 0.2=0.62P(A)=P(A∣H
1
)P(H
1
)+P(A∣H
2
)P(H
2
)=0.6⋅0.8+0.7⋅0.2=0.62
б) Посланный сигнал был принят, вероятность того, что это сигнал А, по формуле Байеса, равна
P(H_1|A)=\dfrac{P(A|H_1)P(H_1)}{P(A)}=\dfrac{0.6\cdot 0.8}{0.62}=\dfrac{24}{31}P(H
1
∣A)=
P(A)
P(A∣H
1
)P(H
1
)
=
0.62
0.6⋅0.8
=
31
24
3.3)
5. -19в- 11 ( в вариантах такого варианта нет)
6. Перемножаем скобки. Выходит а^2 +а -7а -7 + 6а +7. Семерки уходят, уходят также а. Остается а^2. Если а = -1, то а^2= 1
7. Не поняла пример
10. Сумма смежных углов равна 180 градусам..Видимо, там опечатка. Вместо 250- 25. Если так, то градусная мера другого угла равна 155
11.1)
12.Видимо снова опечатка. Сумма углов треугольника= 180 градусам. Следовательно, величина третьего угла равна 40 градусам
13. Так как это равнобедренный треугольник, то второй угол равен тоже 25 градусам. Третий угол= 130.
14.Т.к. треугольник равнобедренный, то, следовательно, стороны треугольника ВДС= 11, 8( АД+ДС=16; АД=ДС=8), 15