М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Liana250202
Liana250202
19.10.2021 10:03 •  Математика

Решите пример с дробями: 1 целая 3/5 : 3/10 + ( 1-3/8) умножить на ( 1 - 1/3) ! : )) и ещё: всех мальчиков, мужчин с праздником! : )

👇
Ответ:
IBRAGIM058
IBRAGIM058
19.10.2021
1)1-3/8=5/8  2)1-1/3=2/3   3)1цел.3/5:3/10=8/5умножить10/3=5цел.1/3    4)5/8умножить2/3=5/12    5)5цел.1/3+5/12=5цел.3/4   ответ:5цел.3/4
4,7(91 оценок)
Ответ:
гвониха
гвониха
19.10.2021
8/5·10/3+5/8·2/3= 16/3+5/12=69/12 =5.75 
4,5(20 оценок)
Открыть все ответы
Ответ:
SOSISKA2281
SOSISKA2281
19.10.2021

Пошаговое объяснение:

Задача на комбинаторику.

В комбинаторике разделяют два типа задач: на сочетания и размещения.

Сочетание - это тип задач в комбинаторике, в которых порядок элементов не важен.

Размещение - это тип задач в комбинаторике, в которых порядок элементов важен.

У нас задача на размещение.

Формула для решения задач на размещения:

A_{n}^m = \frac{n!}{(n-m)!}

Где n - общее количество карт в колоде; m - количество вальтов; дам.

Подставляем значения в формулу:

A_{52}^2 = \frac{52!}{(52-2)!} = \frac{52!}{50!} = 51 * 52 = 2652

Напоминаю, что 52! это - 1 * 2 * 3 * 4 * 5 * 6 ... * 52.

Следовательно, 50! это - 1 * 2 * 3 * 4 * 5 * 6 ... * 50

52! и 50! можем сократить на 50!, в числителе останется 51 * 52, а в знаменателе - 1(мы числитель и знаменатель всегда можем домножить на единицу).

Получаем

Решаем пункт б:

A_{52}^3 = \frac{52!}{(52-3)!} = \frac{52!}{49!} = 50 * 51 * 52 = 132 600

Все то же самое, что и в пункте а.

Задача решена.

4,8(12 оценок)
Ответ:
TimuR2112
TimuR2112
19.10.2021

Пошаговое объяснение:

Задача на комбинаторику.

В комбинаторике разделяют два типа задач: на сочетания и размещения.

Сочетание - это тип задач в комбинаторике, в которых порядок элементов не важен.

Размещение - это тип задач в комбинаторике, в которых порядок элементов важен.

У нас задача на размещение.

Формула для решения задач на размещения:

A_{n}^m = \frac{n!}{(n-m)!}

Где n - общее количество карт в колоде; m - количество вальтов; дам.

Подставляем значения в формулу:

A_{52}^2 = \frac{52!}{(52-2)!} = \frac{52!}{50!} = 51 * 52 = 2652

Напоминаю, что 52! это - 1 * 2 * 3 * 4 * 5 * 6 ... * 52.

Следовательно, 50! это - 1 * 2 * 3 * 4 * 5 * 6 ... * 50

52! и 50! можем сократить на 50!, в числителе останется 51 * 52, а в знаменателе - 1(мы числитель и знаменатель всегда можем домножить на единицу).

Получаем

Решаем пункт б:

A_{52}^3 = \frac{52!}{(52-3)!} = \frac{52!}{49!} = 50 * 51 * 52 = 132 600

Все то же самое, что и в пункте а.

Задача решена.

4,7(68 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ