без ореха 4 м/сек; с орехом 2 м/ сек; расстояние ? м; Решение. А Р И Ф М Е Т И Ч Е С К И Й С П О С О Б. Путь один и тот же; Чем выше скорость, тем меньше времени на него понадобится. Если скорость в два раза больше, то времени на тот же путь потребуется в 2 раза меньше. (S = V*t ; t = S/V ; V₁ = 2V₂; t₁ = S/2V₂ ; t₁ = (1/2)t₂ ) 1 часть время без ореха; 2 части время с орехом; 1 + 2 = 3 (части) время в частях; 3 части = 54 секунды по условию; 54 : 3 = 18 (сек) составляет 1 часть в сек, а это время пути без ореха; 18 * 2 = 36 (сек) время пути с орехом ( два части). 4 * 18 = 72 (м) путь от дупла до орешника; ответ: 72 м между дуплом и орешником; Проверка: 2 * 18 = 72(м) --- это путь от орешника, он равен найденному пути до орешника, т.е. 72-72, сто соответствует условию А Л Г Е Б Р А И Ч Е С К И Й С П О С О Б. Х (сек) время пути ДО орешника; 4 * Х (м) расстояние до орешника; (54 - Х) сек время пути от орешника; 2 * (54 - Х) (м) расстояние ОТ орешника; 4Х = 2 * (54 - Х) так как путь один и тот же: 4Х + 2Х = 108 ; 6Х = 108 ; Х = 18 (сек) 4 * 18 = 72 (м) ответ: 72 м расстояние между дуплом и орешником.
Арифметическая - число, состоящее из одной или из нескольких равных частей (долей) единицы. Д. изображается символом (или a/b), где аи b - целые числа. Числитель аД.показывает число взятых долей единицы, разделенной на столько долей, какова величина знаменателя b. Д. можно рассматривать также, как частное от деления ана b.
Д.не меняется, если ее числитель и знаменатель умножить на одно и то же отличное от нуля целое число. Благодаря этому любые две Д. и можно привести к общему знаменателю, т. е. заменить и на равные им Д., имеющие один и тот же знаменатель. Кроме того, Д. можно сокращать, поделив ее числитель и знаменатель на одно и то же число, вследствие чего, всякую Д. можно представить в виде несократимой, т. е. такой, у к-рой числитель и знаменатель не имеют общих множителей.
Сумма и разность Д. и с одинаковыми знаменателями определяются по правилу:
Чтобы сложить или вычесть Д. с разными знаменателями, надо предварительно привести их к общему знаменателю. Обычно в качестве общего знаменателя дробей и берется наименьшее общее кратное чисел bи d. Умножение и деление Д. производятся по правилам:
Д. наз. правильной, если ее числитель меньше знаменателя, инеправильной - в противном случае. Д. наз. десятичной, если ее знаменатель является степенью числа 10 (см. Десятичная дробь).
Формальное определение дробей. Д. могут быть определены как упорядоченные пары целых чисел ( а, b), где для к-рых задано отношение эквивалентности (отношение равенства Д.), а именно, считается, что ( а, b)= ( с, d), если ad=bc. Кроме того, во множестве Д. определены операции сложения, вычитания, умножения и деления, подчиненные следующим правилам:
ответ 20кг