ответ:Первая задача решается по формуле Байеса
0.2*0.85/(0.3*0.8+0.5*0.9+0.2*0.85) - искомая вероятность
Вторая задача - по формуле полной вероятности
0.3*0.4+0.5*0.3+0.2*0.2 - искомая вероятность
2)Решение.
a) Вероятность, что первый шар белый Р=5/9
Осталось 4 белых, всего 8 шаров, вероятность вытащить второй белый = 4/8=1/2
Р=5/9*1/2 = 5/18 =0,28
б) Р=4/9 * 3/8 = 1/6
в) Вероятность, что первый черный, а второй белый Р=4/9 * 5/8 = 5/18
Вероятность, что первый белый, а второй черный Р=5/9 * 4/8 = 5/18
Окончательно, вероятность, что 1 белый и один черный Р=5/18 + 5/18 = 10/18 = 5/9
3)Найдите вероятность наступления ровно 3 успехов в 8 испытаниях Бернулли с вероятностью успеха p =1/2
Решение. Вероятность успеха =1/2, а вероятность не успеха равна 1-1/2=1/2.
Р8(3) = С83*(1/2)3*(1/2)5 = 8!/(3!*5!) * (1/2)8 = 8*7/256 = 7/32 ≈0,219
Пошаговое объяснение:100%правильно лайк поставьте а то жаловатся буду
рассмотрим случаи, когда 2 туза не будет:
3 туза будут в одной из половин и 4 туза будут в одной из половин.
исходя из этих случаев можно сделать уравнение вероятности, что 2 тузов не будет в одной из двух половин.
одна половина равно 36 / 2 = 18
q1 = 3 / 18 = 1 / 8 = 0.125;
q2 = 4 / 18 = 2 / 9 = 0.22;
каждый случай следует рассматривать отдельно (независимые события).
значит в первом случае:
положительный исход будет
p1 = 1 - q1 = 1 - 0.125 = 0.875;
p2 = 1 - q2 = 1 - 0.22 = 0.78;
тогда общая вероятность будет равна
p = 0.875 * 0.78 = 0.6825
p = 68.25% - вероятность того, что в каждой половине будет по 2 туза.
опенок летний-ложный опенок
шампиньон-бледная поганка