Центру конечного круга дадим наименовании B(x;y). Таким образом у нас получается треугольник АОВ - равнобедренный (поскольку ОА=ОВ=R). 1. Найдем длину отрезка AO=sqrt(2^2+2^2)=2*sqrt(2). 2. Найдем длину отрезка AB - за теоремой косинусов имеем: AB=sqrt(OB^2+AO^2-2(OA*OB)*cos45)=sqrt((4sqrt(2))^2-(2sqrt(2))^2*1/sqrt(2))=sqrt(16-8*sqrt(2)). 3. Теперь можем составить систему: AO=OB^2=x^2+y^2=8 ; AB=(x+2)^2+(y+1)^2=16-8*sqrt(2) => x~-2,82 y~0,17 или x~0,17 y~-2,82. 5. Поскольку точка А находилась в III(-,-) чверти, 45<90 и поворот по часовой(нумерация четвертей идет против часовой), то точка переместиться во II(-,+) чверть, то x~-2,82, y~0,17.
Чтобы решить уравнение нужно привести всё к общему знаменателю х 7 8 ___ - = х-2 х + 2 х² - 4
нижний знаменатель х² - 4 можно разложить по формуле разности квадрата. вы её наверняка проходили. получится (х-2)(х+2) всё уравнение имеет вид х 7 8 ___ - = х-2 х + 2 (х-2)(х+2) ну а теперь домножаем до одного знаменателя. в первом столбике умножим на (х+2), во втором на (х-2), а третий так и оставим. получится: х(х+2) - 7(х-2) - 8 = 0; (х-2)(х+2)
сверху получится х² - 5х + 6 = 0 находим через дискриминант. D = b² - 4ac; D = 25 - 4*6 = 25-24 = 1; х₁= -b + √D = 5 + 1
2a 2
x₁ = 3; х₂ = 5-1 ___ = 2 2
всё уравнение имеет вид (x-2)(x-3) = 0; (х-2)(х+2)
сократив дробь получим х-3 ___ = 0; х + 2 т.к. делить на ноль нельзя, то х+2 ≠0 х ≠ -2 ответ: х∋(-∞;-2)(-2;+∞) на самом деле это несложное уравнение, просто я пыталась как можно больше объяснить свои действия :)
а) Простые множители первого числа: 2;5;5;7;7;
Простые множители второго числа: 2;2;5;5;5;7;
Общие множители: 1;2;7;5;5;
Тогда НОД=1*2*7*5*5=350
Проверим: 2450/350=7; 3500/350=10
НОК=2450*3500/350=24500
ответ: НОД(2450, 3500)=350
НОК(2450, 3500)=24500
б) Простые множители первого числа: 2;2;2;3;3;11;
Простые множители второго числа: 2;3;3;11;11;
Общие множители: 1;2;11;3;3;
Тогда НОД=198, а НОК=8712
Проверим: 792/198=4; 2178/198=11;
НОК=792*2178/198=8712
ответ: НОК(792, 2178)=198
НОД(792, 2178)=8712