Пусть событие А - изделие окажется бракованным и рассмотрим гипотезы :
H_1-H
1
− изделие изготовлено первым поставщиком;
H_2-H
2
− изделие изготовлено вторым поставщиком;
H_3-H
3
− изделие изготовлено третьим поставщиком
Из условия P(H_1)=\dfrac{200}{1000}=0.2;~ P(H_2)=\dfrac{300}{1000}=0.3;~ P(H_3)=\dfrac{500}{1000}=0.5P(H
1
)=
1000
200
=0.2; P(H
2
)=
1000
300
=0.3; P(H
3
)=
1000
500
=0.5 и условные вероятности
\begin{gathered}P(A|H_1)=5\%:100\%=0.05\\ P(A|H_2)=6\%:100\%=0.06\\ P(A|H_3)=4\%:100\%=0.04\end{gathered}
P(A∣H
1
)=5%:100%=0.05
P(A∣H
2
)=6%:100%=0.06
P(A∣H
3
)=4%:100%=0.04
По формуле полной вероятности, вероятность получения со склада бракованного изделия равна
\begin{gathered}P(A)=P(A|H_1)P(H_1)+P(A|H_2)P(H_2)+P(A|H_3)P(H_3)=\\ \\ =0.2\cdot 0.05+0.3\cdot 0.06+0.5\cdot 0.04=0.048\end{gathered}
P(A)=P(A∣H
1
)P(H
1
)+P(A∣H
2
)P(H
2
)+P(A∣H
3
)P(H
3
)=
=0.2⋅0.05+0.3⋅0.06+0.5⋅0.04=0.048
Тогда вероятность получения со склада годного изделия равна
\overline{P(A)}=1-P(A)=1-0.048=0.952
P(A)
=1−P(A)=1−0.048=0.952
ответ: 0,952.
1) 9 - 2 · (-4х + 7) = 7
2 · (-4х + 7) = 9 - 7
2 · (-4х + 7) = 2
-4х + 7 = 2 : 2
-4х + 7 = 1
-4х = 1 - 7
-4х = -6
х = -6 : (-4)
х = 1,5
Проверка: 9 - 2 · (-4 · 1,5 + 7) = 7
9 - 2 · (-6 + 7) = 7
9 - 2 · 1 = 7
7 = 7
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2) 9 + 10 · (3х - 10) = 2
10 · (3х - 10) = 2 - 9
10 · (3х - 10) = -7
3х - 10 = -7 : 10
3х - 10 = -0,7
3х = 10 - 0,7
3х = 9,3
х = 9,3 : 3
х = 3,1
Проверка: 9 + 10 · (3 · 3,1 - 10) = 2
9 + 10 · (-0,7) = 2
9 + (-7) = 2
2 = 2
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3) 7 + 9 · (4х + 5) = -2
9 · (4х + 5) = -2 - 7
9 · (4х + 5) = -9
4х + 5 = -9 : 9
4х + 5 = -1
4х = -1 - 5
4х = -6
х = -6 : 4
х = -1,5
Проверка: 7 + 9 · (4 · (-1,5) + 5) = -2
7 + 9 · (-1) = -2
7 - 9 = -2
-2 = -2
- 7X = 13
X = ( - 13/7 ) = ( - 1 6/7 )