Название
Дословно термин «тригонометрия» можно перевести как «измерение треугольников». Основным объектом изучения в рамках данного раздела науки на протяжении многих веков был прямоугольный треугольник, а точнее - взаимосвязь между величинами углов и длинами его сторон (сегодня с этого раздела начинается изучение тригонометрии с нуля). В жизни нередки ситуации, когда практически измерить все требуемые параметры объекта (или расстояние до объекта) невозможно, и тогда возникает необходимость недостающие данные получить посредством расчётов.
Например, в человек не мог измерить расстояние до космических объектов, а вот попытки эти расстояния рассчитать встречаются задолго до наступления нашей эры. Важнейшую роль играла тригонометрия и в навигации: обладая некоторыми знаниями, капитан всегда мог сориентироваться ночью по звездам и скорректировать курс.
Основные понятия
Для освоения тригонометрии с нуля требуется понять и запомнить несколько основных терминов.
Синус некоторого угла - это отношение противолежащего катета к гипотенузе. Уточним, что противолежащий катет - это сторона, лежащая напротив рассматриваемого нами угла. Таким образом, если угол составляет 30 градусов, синус этого угла всегда, при любом размере треугольника, будет равен ½. Косинус угла - это отношение прилежащего катета к гипотенузе.
Тангенс - это отношение противолежащего катета к прилежащему (либо, что то же самое, отношение синуса к косинусу). Котангенс - это единица, деленная на тангенс.
Стоит упомянуть и знаменитое число Пи (3,14…), которое представляет собой половину длины окружности с радиусом в одну единицу.
Популярные ошибки
Люди, изучающие тригонометрию с нуля, совершают ряд ошибок - в основном по невнимательности.
Во-первых, при решении задач по геометрии необходимо помнить, что использование синусов и косинусов возможно только в прямоугольном треугольнике. Случается, что учащийся «на автомате» принимает за гипотенузу самую длинную сторону треугольника и получает неверные результаты вычислений.
Во-вторых, поначалу легко перепутать значения синуса и косинуса для выбранного угла: напомним, что синус 30 градусов численно равен косинусу 60, и наоборот. При подстановке неверного числа все дальнейшие расчёты окажутся неверными.
В-третьих, пока задача полностью не решена, не стоит округлять какие бы то ни было значения, извлекать корни, записывать обыкновенную дробь в виде десятичной. Часто ученики стремятся получить в задаче по тригонометрии «красивое» число и сразу же извлекают корень из трёх, хотя ровно через одно действие этот корень можно будет сократить.
На прямую пропорциональность:
1) При равномерном движении поезд за 4 секунды метров. Сколько метров проедет поезд за 20 секунд?
Решение: 1) 20 : 4 = 5 (раз) во столько раз больше времени, значит и расстояние проедет в 5 раз больше.
2) 120 * 5 = 600 (м) - проедет поезд за 20 минут.
2) При равномерном движении поезд за 4 секунды метров. Сколько времени понадобиться ему, чтобы пройти расстояние 1км 200 м?
Решение: 1) 1200 : 120 = 10 (раз) - во столько раз больше нужно пройти, следовательно времени потребуется также в 10 раз больше.
2) 4 * 10 = 40 (с) - потребуется на прохождение 1км 200 м.
На обратно пропорциональную зависимость:
1) Поезд участок пути со скоростью 75 км/ч за 4 часа. За сколько часов поезд пройдет этот же участок пути, если будет двигаться со скоростью 100 км/ч?
Решение: 1) 75 * 4 = 300 (км) - путь, пройденный за 4 часа. Так как скорость увеличивается, то времени на прохождение того же участка пути понадобиться меньше.
2) 300 : 100 = 3 (часа) - время, необходимое на этот путь при скорости 100 км/ч.
2) Закупили 6 метров ткани по 50 рублей. Сколько ткани можно купить на эту же сумму по цене 75 рублей?
Решение: 1) 50 *6 = 300 (р) - стоимость покупки; С увеличением цены, количество купленной ткани уменьшается.
2) 300 : 75 = 4 (м) - ткани можно купить по цене 75 рублей.