М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dudich97
dudich97
24.11.2020 19:42 •  Математика

Сколько будет 16год30хв- 9год 40 хв.

👇
Ответ:
макс2857
макс2857
24.11.2020
16 год 30 хв - 9 год 40 хв

треба години перевести в хвилини
1) 16 год  * 60 (хвилин в годині) = 960 хвилин
тоді 16 год 30 хв = 960 хвилин + 30 хвилин = 990 хвилин

2) 9 годин * 60 (хвилин в одній годині) = 540 хвилин
тоді буде 9 год 40 хвилин = 540 хвилин +40 хвилин = 580 хвилин

3) 990 хвилин - 580 хвилин = 410 хвилин

тепер переведемо 410 хвилин в години = 6 годин 50 хвилин

Відповідь: 6 годин 50 хвилин
4,4(35 оценок)
Открыть все ответы
Ответ:
гвониха
гвониха
24.11.2020

Справочник

Тригонометрия

Статью подготовили специалисты образовательного сервиса Zaochnik.

Как работает сервис

Наши социальные сети

Синус, косинус, тангенс и котангенс: определения в тригонометрии, примеры, формулы

Содержание:

Синус, косинус, тангенс и котангенс. Определения

Угол поворота

Числа

Тригонометрические функции углового и числового аргумента

Связь определений sin, cos, tg и ctg из геометрии и тригонометрии

Синус, косинус, тангенс и котангенс: основные формулы

Тригонометрия - раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой науки внесли ученые Ближнего Востока и Индии.

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии.

Синус, косинус, тангенс и котангенс. Определения

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Синус угла (

sin

α

) - отношение противолежащего этому углу катета к гипотенузе.

Косинус угла (

cos

α

) - отношение прилежащего катета к гипотенузе.

Тангенс угла (

t

g

α

) - отношение противолежащего катета к прилежащему.

Котангенс угла (

c

t

g

α

) - отношение прилежащего катета к противолежащему.

Данные определения даны для острого угла прямоугольного треугольника!

Приведем иллюстрацию.

Синус, косинус, тангенс и котангенс. Определения

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.

Важно помнить!

Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тангенса и котангенса - вся числовая прямая, то есть эти функции могут принимать любые значения.

Угол поворота

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от

до

+

.

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.

Угол поворота

Начальная точка

A

с координатами (

1

,

0

) поворачивается вокруг центра единичной окружности на некоторый угол

α

и переходит в точку

A

1

. Определение дается через координаты точки

A

1

(

x

,

y

).

Синус (sin) угла поворота

Синус угла поворота

α

- это ордината точки

A

1

(

x

,

y

).

sin

α

=

y

Косинус (cos) угла поворота

Косинус угла поворота

α

- это абсцисса точки

A

1

(

x

,

y

).

cos

α

=

х

Тангенс (tg) угла поворота

Тангенс угла поворота

α

- это отношение ординаты точки

A

1

(

x

,

y

) к ее абсциссе.

t

g

α

=

y

x

Котангенс (ctg) угла поворота

Котангенс угла поворота

α

- это отношение абсциссы точки

A

1

(

x

,

y

) к ее ординате.

c

t

g

α

=

x

y

Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом. Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой (

0

,

1

) и (

0

,

1

). В таких случаях выражение для тангенса

t

g

α

=

y

x

просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогично ситуация с котангенсом. Отличием состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.

Важно помнить!

Синус и косинус определены для любых углов

α

.

Тангенс определен для всех углов, кроме

α

=

90

°

+

180

°

k

,

k

Z

(

α

=

π

2

+

π

k

,

k

Z

)

Котангенс определен для всех углов, кроме

α

=

180

°

k

,

k

Z

(

α

=

π

k

,

k

Z

)

При решении практических примеров не говорят "синус угла поворота

α

". Слова "угол поворота" просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.

4,6(20 оценок)
Ответ:
sstadina9
sstadina9
24.11.2020

Вроде правельный ответ (А)

\dispaystyle f(x)=3x^2-4x+2\dispaystylef(x)=3x

2

−4x+2

\dispaystyle F(x)=3* \frac{x^3}{3}-4* \frac{x^2}{2}+2x+C=x^3-2x^2+2x+C\dispaystyleF(x)=3∗

3

x

3

−4∗

2

x

2

+2x+C=x

3

−2x

2

+2x+C

\begin{gathered}\dispaystyle A(-1;0)\\F(-1)=0\\F(-1)=(-1)^3-2(-1)^2+2(-1)+c=-1-2-2+C=-5+C=0\\C=5\end{gathered}

\dispaystyleA(−1;0)

F(−1)=0

F(−1)=(−1)

3

−2(−1)

2

+2(−1)+c=−1−2−2+C=−5+C=0

C=5

2)

\dispaystyle f(x)=cos \frac{x}{2}\dispaystylef(x)=cos

2

x

\dispaystyle F(x)=2sin \frac{x}{2}+ C\dispaystyleF(x)=2sin

2

x

+C

\begin{gathered}\dispaystyle A( \frac{ \pi }{3};1)\\F( \frac{ \pi }{3})=1 \end{gathered}

\dispaystyleA(

3

π

;1)

F(

3

π

)=1

\begin{gathered}\dispaystyle F( \frac{ \pi }{3})=2sin ( \frac{ \pi }{3}/2)+ C=2sin \frac{ \pi }{6}+ C=2* \frac{1}{2}+C=1+C=1\\C=0 \end{gathered}

\dispaystyleF(

3

π

)=2sin(

3

π

/2)+C=2sin

6

π

+C=2∗

2

1

+C=1+C=1

C=0

4,6(100 оценок)
Новые ответы от MOGZ: Математика
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ