Пусть у каждого осталось по х (грибов) тогда Вася нашёл (х + 5) грибов Коля нашёл (х + 6) грибов, а Миша нашёл (х + 8) грибов) По условию задачи составим уравнение: х + 5 + х + 6 + х + 8 = 70 3х = 70 - 19 3х = 51 х = 17 ответ: по 17 грибов осталось у каждого.
Решение задачи может быть верным, если собрали 70 грибов или 40 грибов При условии, что собрали 40 грибов, у каждого мальчика останется по 7 грибов.
Даю решение без х при всех собранных 40 грибах: 1) 5 + 6 + 8 = 19(грибов) отдали на суп 2) 40 - 19 = 21 (гриб) осталось у троих мальчиков) 3) 21 : 3 = (по) 7 грибов осталось у каждого.
В задаче опечатка в количестве собранных грибов. 60 просто не может быть.
Здесь произведения протых натуральных чисел делятся на произведения простых натуральных чисел. То есть, если в скобках после знака деления каждое число хотя бы раз встречается в скобках до знака деления, то результат будет натуральным числом: (3*5*7):(3*7) - 3 и 7 из второй скобки есть и в первой скобке, поэтому при делении они сократятся и в результате получится 5 - натуральное число. (5*11*13*23):(11*23*7) - 11 и 23 есть в первой скобке, а вот 7 нет. Т.к. все числа в скобках простые, то 7 не разделит первую скобку нацело и в результате получится рациональное число - НЕ натуральное. (7*19*29*31):(19*29*31) - опять все числа из второй скобки содержатся в первой скобке. После деления получится 7 - натуральное число. (37*41*43):(37*41*43) - в скобках одинаковые числа, при делении получится 1 - натуральное число.
2/5 = 14/35
15/35 > 14/35 ---> 3/7 > 2/5
2/3 = 22/33
7/11 = 21/33
22/33 > 21/33 ---> 2/3 > 7/11