tg2a=1,0084
Пошаговое объяснение:
Найдите tg2a, если sin a=12/13, П/2<а<П
tg2a=sin 2a / cos 2a= 2sin a*cos a/(cos² a - sin²a)
=2sin a*cos a/(1- sin² a - sin²a)= 2sin a*cos a / (1 - 2sin²a)=
sin a=12/13. sin² a=144/169 . cos a=√(1-144/169)=-5/13
cos a = -5/13 потому что угол во второй четверти. Косинус во второй четверти отрицательный.
tg2a=2*(12/13)*(-5/13) / (1-2*144/169)=1 1/119=1,0084
угол тангенс которого равен данному,но находящийся в 1 четверти =45,24+180к,
подставим к=1, и переведем в п,разделив на 180 и умножив на "п"
2а=225,24 = 1,2513п ⇒ п/2 ∠ а=0,62565п ∠п
1 4/6х+5/6= 2 6/12+7/12-4 3/12
1 9/6х= 2+7-4+6/12+7/12-3/12=5 10/12=5 5/6
2 3/6х=5 5/6
х=5 5/6 / 2 3/6= 35/6 * 6/15=35/15=2 5/15= 2 1/3