(1) a^20
(2) b^30
(3) c^4
(4) d^30 (
5) c^5 (6)
k^84
(^ - знак степени)
Пошаговое объяснение:
Правило один: Если степень возводится в другую степень, то они перемножаются.
Пример: (a^2)^2 = a^4
Правило два: Если число в одной степени умножается на другое число в другой степени, то числа перемножаются , а степени складываются.
Пример: a^4 × a^4 = a^8
Правило три: Если число в одной степени делится на другое число в другой степени, то числа делятся, а степени вычитаются.
Пример: a^7 : a^4 = a^3
(2^2 : 1^2 = 4 : 1 = 4)
Решение во вложении.
Для решения неравенства грфически вам нужно преобразовать его в функцию f(x)=(...), построить графики данных уравнений, а затем определить, в какой из плоскостей, ограничиваемых графиком, находится нужное множество решений. Для прямой - слева или справа, для параболы - внутри неё или снаружи. Для этого берём любую точку из перечисленных областей и подставляем в неравенство. Если оно верное, зашриховываем выбранную зону. Если нет - противоположную ей область. Для прямой это оказалась область справа от неё, а для параболы - внутри. Затем ищем пересечение штриховок. Это ответ.
Обратите внимание: графическим решением неравенства при строгом знаке (> или <) является ТОЛЬКО определённая вами область, высекаемая графиком. Если знаки нестрогие (<= или >=), то точки самого графика тоже принадлежат множеству решений системы.
Обращаю внимание: я нарисовала новый чертёж с ответом отдельно. Это делать необязательно, достаточно просто хорошо прорисовать область решений на первом чертеже.