1. надо продифференцировать числитель и знаменатель и потом вычислить предел, производная числителя равна 12х+13, а знаменателя 6х+8, можно еще раз продифференцировать числитель и знаменатель, , в числителе получим 12, в знаменателе 6, значит, предел равен 12/6=2 2.Ко второму примеру применить правило Лопиталя нельзя, т.к. предел отношения двух бесконечно малых величин должен быть равен пределу отношения их производных, если последний предел существует, но это не так. предел не существует.
3. найдем производные числителя и знаменателя, а потом возьмем предел при х стремящемся к к нулю. (2cos2х)/(2sin2x)=ctg2x, а
предел ctg2x, если х устремить к нулю, равен ∞
аль-Хорезми принимал участие в измерении длины градуса дуги земного меридиана с целью уточнить величину окружности Земли, найденную в древности. Измерения, сделанные в пустыне Синджар оставались не превзойденными по точности на протяжении 700 лет.
Также проработал правила умножения многочленов и решение квадратных уравнений различных видов.