Полезное утверждение: сумма цифр даёт такой же остаток при делении на 9, что и само число. Доказательство. Пусть число имеет вид . Рассмотрим разность между этим числом и суммой его цифр:
Коэффициент перед равен - k девяток, очевидно делится на 9. Если разность двух целых чисел делится на 9, то они дают одинаковые остатки при делении на 9, что и требовалось доказать.
Возвращаемся к задаче. Первоначальное число давало остаток 6 при делении на 9. Тогда после первого нажатия волшебной кнопки на экране будет число, дающее такой же остаток от деления на 9, что и 2 * 6, после следующего - как и 4 * 6, и вообще, после n нажатий число будет давать такой же остаток, что и . не делится на 9 ни при каком n, так что на экране не появится ни одного числа, делящегося на 9, в том числе и 9333 = 9 * 1037.
скорость время расстояние авто х+48 км/ч был в пути всего меньше вело х км/ч на 5 ч 36 мин 84 км
Составляем уравнение, учитывая, что велосипедист был в пути дольше автомобиля на 5 ч 36 мин = 5_36/60 = 5,6 ч Приводим к общему знаменателю х(х+48) и отбрасываем его, заметив, что х≠0 и х≠-48 84(х+48)-84х=5,6х(х+48) 84х+48*84-84х=5,6 х^(2) +48*5.6x 5.6 x^(2) +48*5.6x - 48*84 = 0 |*10:8 7x^(2) + 336 x - 5040 = 0 x^(2) +48x-720=0 D=2304+4*720=5184=72^(2) x(1)=(-48+72)/2 = 12 (км/ч) скорость велосипедиста x(2)=(-48-72)/2<0 не подходит под условие задачи (скорость >0)
2)70см
3)60см
4)70см