ответ:Формулы не в КНФ:
{\displaystyle \neg (B\vee C),}{\displaystyle (A\wedge B)\vee C,}{\displaystyle A\wedge (B\vee (D\wedge E)).}
Но эти 3 формулы не в КНФ эквивалентны следующим формулам в КНФ:
{\displaystyle \neg B\wedge \neg C,}{\displaystyle (A\vee C)\wedge (B\vee C),}{\displaystyle A\wedge (B\vee D)\wedge (B\vee E).}
Пошаговое объяснение:
Конъюнкти́вная норма́льная фо́рма (КНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид конъюнкции дизъюнкций литералов. Конъюнктивная нормальная форма удобна для автоматического доказательства теорем. Любая булева формула может быть приведена к КНФ.[1] Для этого можно использовать: закон двойного отрицания, закон де Моргана, дистрибутивность.
51,32 + х = 72 : 0.12
51,32 + х = 600
х = 600 - 51,32
х = 548,68
2) 17,28 : (560 - х) = 36
560 - х = 17,28 : 36
560 - х = 0,48
-х = 0,48 - 560 | * -1
х = 560 - 0,48
х = 559,52