На кольцевой трассе длиной 50 км проводят тренировку три гонщика. они стартуют одновременно с одного места. через какое время после старта они впервые окажутся рядом, если скорости автомобилей 50 км/ч, 100 км/ч и 250 км/ч?
Х девочек всего в классе у мальчиков всего в классе 1/3 от х = х/3 девочек участвовало в конкурсе у/5 мальчиков участвовало в конкурсе (х + у) всего учеников в классе (х + у)/4 всего учеников участвовало в конкурсе Получаем уравнение х/3 + у/5 = (х + у)/4 и неравенство 30< (x + y) < 40 Решаем уравнение Приведя к общему знаменателю 60, получим 20х + 12у = 15*(х + у) 20х + 12у = 15х + 15у 20х - 15х = 15у - 12у 5х = 3у х = 3у/5 Далее решаем подбора, где у/5 - целое число При у₁ = 5 получаем х₁ = 3 , сумма 5 + 3 = 8, не удовлетворяет условию 30< (x + y) < 40 При у₂ = 10 получаем х₂ = 6 , сумма 10 + 6 = 16, не удовлетворяет условию 30< (x + y) < 40 При у₃ = 15 получаем х₃ = 9, сумма 15 + 9 = 24, не удовлетворяет условию 30< (x + y) < 40 При у₄ = 20 получаем х₄ = 12 , сумма 20 + 12 = 32, удовлетворяет условию 30< (x + y) < 40 Значит, в классе 12 девочек и 20 мальчиков 20 - 12 = 8 ответ: в классе на 8 мальчиков больше, чем девочек.
Видимо в условии должно быть "является арифметической прогрессией". попробуем доказать, обозначим члены последовательности через х и найдем формулу двух соседних ее членов х(n+1) и x(n) очевидно что x(n+1)=S(n+1)-S(n) и х(n)=S(n)-S(n-1) (начиная с n=2) x(n+1)=S(n+1)-S(n) = =5(n+1)²-7(n+1)+3-[5n²-7n+3]=5n²+10n+5-7n-7+3-5n²+7n-3=10n-2 x(n)=S(n)-S(n-1)=5n²-7n+3-[5(n-1)²-7(n-1)+3]= после сокращений получается = 10n-12 найдем разность между двумя соседними членами последовательности x(n+1)-x(n)=10n-2-(10n-12)=10n-2-10n+12=10 получается что разность между двумя соседними членами последовательности =10 то есть каждый последующий получается прибавлением к предыдущему одного и того же числа 10, значит это арифметическая прогрессия. но это выполняется для членов начиная со второго. то есть в полном объеме все-таки не арифметическая
всё я так думаю.А это задача в тетрадь
???