ответ:
Пошаговое объяснение:
Из условия следует, что уравнение f(x)-x=0 не имеет решений. Поскольку f(x)-x - непрерывная функция, то она либо всюду положительна, либо всюду отрицательна, иначе она бы в некоторой точке принимала значение 0 (по теореме о промежуточном значении). Пусть f(x)-x всюду положительна. Это значит, что для любого x выполнено неравенство f(x)>x. Пусть f(x)=y. Тогда f(f(x))=f(y)>y=f(x)>x. Таким образом, при любом x f(f(x))-x>0, т.е. уравнение f(f(x))=x не имеет корней. Аналогичным образом, показываем, что уравнение f(f(x))=x не имеет корней и в том случае, когда для любого x выполнено неравенство f(x)<x.
1) 2^8+4^5-8^2=2^8+(2^2)^5-(2^3)^2=2^8+2^10-2^6=2^6*(2^2+2^4-1)=2^6*(4+16-1)=2^6*19=2^5*(2*19)=2^5*38 это выражение делится на 38
(2^5*38)/38=2^5=32 что требовалось доказать
2) 3^11+9^6+27^3=3^11+(3^2)^6+(3^3)^3=3^11+3^12+3^9=3^9*(3^2+3^3+1)=3^9*(9+27+1)=3^9*37=3^8*(3*37)=3^8*111 это выражение делится на 111
(3^8*111)/111=3^8 что требовалось доказать
3) a=9^7+9^6+9^5=(3^2)^7+(3^2)^6+(3^2)^5=3^14+3^12+3^10=3^10*(3^4+3^2+1)=3^10*(81+9+1)=3^10*91.
b=3^10-3^9+3^8=3^8*(3^2-3+1)=3^8*(9-3+1)=3^8*7
(3^10*91)/(3^8*7)=3^2*91/7=9*13=117 что и требовалось доказать а делится на b