1. Поскольку из условия задачи нам известно, что обще число рабочих составляет 200 человек, следовательно при случайном выборе рабочего может попасться любой, а значит существует 200 разных исходов в данной ситуации.
2. А поскольку из условия задачи также известно, что норму не выполняют 15 из них, следовательно вариантов, удовлетворяющих требуемому условию 15. Вычислим какова вероятность того, что один случайно выбранный рабочий не выполняет норму.
р = 15 / 200 = 0,075.
3. А теперь вычислим вероятность того, что 2 случайно выбранных рабочих не выполняют норму.
р = 0,075 * 0,075 = 0,005625.
2) 12+18=30-человек имеют бороды и усы
3) 30-26=4 человека имеют одновременно и усы и бороду
Сначала найдём, у скольких хоккеистов есть или борода, или усы, или и то, и другое. Для этого от общего числа хоккеистов отнимем число тех, у кого нет ни усов, ни бороды. 29-3=26 хоккеистов имеют бороду или усы, или и то, и другое. Мы знаем, что 12 из них имеют бороды, значит, остальные бород не имеют. 26-12=14 не имеют бород, но имеют усы. Если от числа всех хоккеистов, имеющих усы, отнять число хоккеистов, не имеющих бород, то получим число хоккеистов, у которых есть и усы, и бороды одновременно. 18-14=4 хоккеистов имеют и усы, и бороды.