Для решения выражения 815 * 204 - (8963 + 68077) : 36; 9676 + 12237 - 8787 * 2 : 29 необходимо выполнить по четыре действия.
Решение примера:
1) 815 * 204 - (8963 + 68077) : 36 = 166260 - 77040 : 36 = 166260 - 2140 = 164120;
1) 8963 + 68077 = 77040,
2) 815 * 204 = 166260,
3) 77040 : 36 = 2140,
4) 166260 - 2140 = 164120.
2) 9676 + 12237 - 8787 * 2 : 29 = 9676 + 12237 - 606 = 21913 - 606 = 21307.
1) 8787 * 2 = 17574,
2) 17574 : 29 = 606,
3) 9676 + 12237 = 21913,
4) 21913 - 606 = 21307.
ответ примера: 164120; 21307.
Пошаговое объяснение:
1) у=4 - х², ⇒ у=-х²+4 ⇒у=-х²+0х+4 , т.е. а=1, b=0, c=4;
найдём абсциссу вершины параболы по формуле х₀=-b/2a ⇒ х₀=0/2=0
х₀=0, значит y₀ = 4-0²=4
Значит вершина параболы (0; 4)
Нули функции: у=0, если 4-х²=0 ⇒х²=4 ⇒х=±2 (нули функции)
2) у=3(х+5)²-27⇒у=3(х²+10х+25)-27=3х²+30х+75 - 27=3х²+30х+48
у=3х²+30х+48 т.е. а=3, b=30, c=48;
найдём абсциссу вершины параболы по формуле х₀=-b/2a ⇒х₀=-30/(2·3)= - 5, тогда
х₀= -5 ⇒ y₀ = 3(-5+5)²-27= -27
Значит вершина параболы (-5; -27)
Хотя, если парабола задана формулой у=а(х-m)²+n, то числа m,n -координаты вершина параболы; у нас m=-5, n=-27⇒ вершина параболы (-5; -27)
y=0, если 3(х+5)²-27 = 0 ⇒3(х+5)²=27 ⇒(х+5)²=9⇒
х+5=3 и х+5=-3
х₁=-2 х₂=-8
Нули функции: х=-2 и х=-8
2)450/5=90кг
3)226/2=113кг в среднем с какждой сотки каждогт участка. Чтобы вычислить среднее со всех участков надо: 95+90+113/3=99,3 кг