S1=70; S1=a*b, a=70/b. S2=70; S2=(a-4)(b+2). Составим уравнение: (70/b-4)(b+2)=70. Решим уравнение относительно b. (70-4b)(b+2)=70b; 70b +140-4b^2-8b=70b; -4b^2-8b+140=0;
-b^2-2b+35=0; b^2+2b-35=0; D= 2^2-4*(-35)=144; b1=(-2-12)/2=-14/2=-7 (не подходит, т.к. <0). b2=(-2+12)/2=10/2=5 (м)- ширина одного прямоугольника; a=70/5=14 (м) – длина одного прямоугольника. Следовательно, 14-4=10 (м) – длина другого прямоугольника, 5+2=7 (м)- ширина пдругого прямоугольника. ответ: стороны прямоугольников – 7м и 10м, 5м и 14м. Как то так.
35/4(x+y)=1
Для первой трубы уравнение будет
21x=1
Производительность первой трубы
X=1/21
Преобразуем первое уравнение
X+y=4/35
Выразим производительность второй трубы
Y=4/35-1/21
Y=12/105-5/105
Y=7/105
Y=1/15
То есть вторая труба наполнит бассейн за 15 часов