1. Площадь квадрата равна длине его стороны, возведённой в квадрат: , где
- это сторона квадрата. Зная площадь, можем вычислить длину стороны:
см. Периметр квадрата равен длине его стороны, умноженной на 4:
см.
2. Периметр прямоугольника равен удвоенной сумме его смежных сторон. Пусть см - одна из сторон прямоугольника, а другая сторона на 3 см больше, то есть,
см. Составляем уравнение:
Тогда другая сторона его см.
Площадь прямоугольника равна произведению длин его смежных сторон, тогда см².
3. Для начала найдём вторую сторону прямоугольника. Периметр прямоугольника равен удвоенной сумме его смежных сторон, тогда:
Тогда площадь прямоугольника см².
Прямоугольник имеет такую же площадь, что и квадрат. Площадь квадрата равна длине его стороны, возведённой в квадрат: , где
- это сторона квадрата. Зная площадь, можем вычислить длину стороны:
см. Периметр квадрата равен длине его стороны, умноженной на 4:
см.
В равностороннем треугольнике ABC на сторонах AC и BC отметили точки D и E такие, что CD=2AD, BE=2CE. Обозначим точку пересечения отрезков AE и BD через F. Чему равен угол BFC?
Пошаговое объяснение:
1) Введем прямоугольную систему координат .Пусть АВ=ВС=АС=1. Пусть FC∩АВ=Р .Пусть ЕК⊥АС, ВН⊥АС, РМ⊥АС.
2) Определим координаты точек .
А(0;0) ,В( ;
) ,С(1;0) ,Н(0,5 ;0) ,D(
;0) ,К(
;0) , Е(
3)Найдем координаты направляющих векторов: DB( ;
) , РС(
;
).
4)Найдем скалярное произведение векторов .
DB *РС= *
+
*(
) =
⇒вектор DB⊥PC ⇒∠BFC=90°.
=======================================
Пояснения( жуткие вычисления , слабонервным можно не читать).
1) Координаты точки Е. ΔКСЕ прямоугольный .
КЕ=СЕ*sin60= *
.
КС=СЕ*cos60= =
, поэтому АК= 1-
→ Е(
;
) .
2)Координаты точки В. ΔАВН- прямоугольный .
АН=НС= .
ВН=АВ*sin60=1* =
3)Ищем координаты точки Р
а)ΔВDC , по т. Менелая ,
,
.
б)ΔАВD , по т. Менелая ,
,
,
AP= =
.
в)ΔАРМ прямоугольный .
РМ=АР*sin60= *
=
.
АМ=АР*cos60= =
→ P (
;
) .