Пояснение: Если весь путь составлял 300 км, а ему осталось еще 120 км, тогда он уже проехал 300-120=180 км, тоесть он проехал 180 км. Ехал он со скоростью 60 км/ч. Чтобы найти время, нужно расстояние поделить на скорость. В результате получим: 180/60=3 часа. Действия: 1)300-120=180км(часть пути со скоростью 60км/ч) 2)180:60=3часа(потрачено на 1 часть пути) дольше решение уравнением: 180-3часа 120-Хчасов 120*3:180=2часа Краткая запись: Проехал- 60 км\ч Осталось- 120 км Путь- 300 км 1)300+120=420(км)- он проехал за всё время. 2)420:60=7(ч)-Он потратил на этот путь. ответ: 7 часов
Чтобы решить эту задачу, нам понадобятся знания о свойствах вписанной окружности и формуле площади треугольника.
Согласно свойству вписанной окружности, любая прямая, проведенная из вершины треугольника к точке касания окружности с стороной, делит эту сторону на две части, длины которых являются хордами окружности. В нашем случае, такая прямая будет проходить через точку C и делить сторону AB на две равные части длиной 7.5 см каждая.
Мы можем обозначить длины сторон треугольника как AB = 15 см, AC = 7.5 см и BC = 7.5 см. Теперь мы можем использовать формулу полупериметра треугольника и радиус вписанной окружности, чтобы найти площадь треугольника.
Полупериметр треугольника вычисляется по формуле s = (AB + AC + BC) / 2. В нашем случае s = (15 + 7.5 + 7.5) / 2 = 15 см.
Формула площади треугольника через полупериметр и радиус вписанной окружности имеет вид S = sqrt(s * (s - AB) * (s - AC) * (s - BC)), где sqrt обозначает квадратный корень.