y=kx+1 и y=kx^2−(k−3)x+k приравниваем, решаем и требуем чтобы было 2 корня D>0
kx+1=kx^2−(k−3)x+k
kx^2-(k-3)x+k-kx-1=0
kx^2-(2k-3)x+k-1=0
D=(2k-3)^2-4k(k-1)=4k^2-12k+9-4k^2+4k=-8k+9>0
8k<9
k<9/8
теперь y=kx+1 и y=(2k−1)x^2−2kx+k+9/4 приравниваем и требуем чтобы не было корней D<0
kx+1=(2k−1)x^2−2kx+k+9/4
(2k−1)x^2−2kx+k+9/4-kx-1=0
(2k−1)x^2−3kx+k+5/4=0
D=(3k)^2-4(2k-1)(k+5/4)=9k^2-(2k-1)(4k+5)=9k^2-8k^2+4k-10k+5=k^2-6k+5=(k-1)(k-5)<0
1<k<5
пересекаем k<9/8 и 1<k<5 - ответ 1<k<9/8
ответ 1<k<9/8
Такого прямоугольника нет, например, если умножить 110*111=12210 см кв., если умножить 111*112=12432 см. кв. Число 12345 попадает в этот промежуток площадей, данное значение невозможно получить из натуральных чисел с разницей в единицу..
Доказать это можно так, приняв одну из сторон за Х:
Х(Х+1)=12345
Решаем квадратное уравнение Х^2+Х-12345=0, находим дискриминант
Д=49381 (Корень из данного значения выделить в натуральном выражении невозможно. С округлением - это 222,218. Следовательно, и корни квадр. уравнения не будут натуральными числами.).Можно вычислить корни только с приближением (округлением):
Х1=(-1+222,218)/2= 110,61 или Х2=(-1-222,218)/2=-111,61
чень понравилось в Лувре и на Эйфелевой башне .
В Монте Карло я не была но я мечтаю туда съездить , ведь там белые пески , брендовые магазины и много много казино .
Я считаю , что каждый человек должен побывать во Франции !