М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Empresssss
Empresssss
24.03.2022 18:11 •  Математика

Определите при каком значении х равны значения выражений 1-0,5х 3+2х -2 4

👇
Ответ:
qalaysiz345
qalaysiz345
24.03.2022
(1-0,5х)/(-2)=(3+2х)/4
4-2х=-6-4х
2х=-10
х=-5
4,6(19 оценок)
Открыть все ответы
Ответ:
Вадим8383
Вадим8383
24.03.2022
ВАРИАНТ 1. К-7
1) В драматическом кружке занимаются (28:7)*4 = 4*4 = 16 девочек.
2) Возле школы (42:2)*3 = 21*3 = 63 дерева.
3) 5/12< 7/12; 8/9>4/9.
4) а) 7 дм3 = 7/1000 м3: б) 17 мин =17/1140 суток; в) 5 коп= 5/1200 от р.
5) Дробь будет правильной при т = 1 и т = 2.

ВАРИАНТ 2. К-7
1) Ширина прямоугольника (56:8)*7 = 7*7 = 49 см.
2) На олимпиаде было (48:3)*8 = 16*8 = 128 участников.
3) 8/15>4/15; 5/11< 6/11.
4) а) 19 га = 19/100 км2; б) 39ч = 39/168 недели; в) 37г= 37/5000 от 5 кг.
5) Дробь будет правильной при к = 4, к = 3 и к = 2.
4,8(75 оценок)
Ответ:
mandarinkamare007
mandarinkamare007
24.03.2022

1.Нахождение области определения функции

Определение интервалов, на которых функция существует.

!!! Очень подробно об области определения функций и примеры нахождения области определения тут.

2.Нули функции

Для вычисления нулей функции, необходимо приравнять заданную функцию к нулю и решить полученное уравнение. На графике это точки пересечения с осью ОХ.

3.Четность, нечетность функции

Функция четная, если y(-x) = y(x). Функция нечетная, если y(-x) = -y(x). Если функция четная – график функции симметричен относительно оси ординат (OY). Если функция нечетная – график функции симметричен относительно начала координат.  

4.Промежутки знакопостоянства

Расстановка знаков на каждом из интервалов области определения. Функция положительна на интервале - график расположен выше оси абсцисс. Функция отрицательна - график ниже оси абсцисс.  

5. Промежутки возрастания и убывания функции.

Для определения вычисляем первую производную, приравниваем ее к нулю. Полученные нули и точки области определения выносим на числовую прямую. Для каждого интервала определяем знак производной. Производная положительна - график функции возрастает, отрицательна - убывает.

6. Выпуклость, вогнутость.

Вычисляем вторую производную. Находим значения, в которых вторая производная равна нулю или не существует. Вторая производная положительна - график функции выпукл вверх. Отрицательна - график функции выпукл вниз.  

7. Наклонные асимптоты.

 

 

Пример исследования функции и построения графика №1

Исследовать функцию средствами дифференциального исчисления и построить ее график.

Пошаговое объяснение:

4,4(98 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ