Пошаговое объяснение:
Перша автостоянка х машин.
Друга автостоянка (х * 3) машин.
З другої автостоянки перевели 12 автомобілів на першу, стало порівно.
Скільки машин було на кожній стоянці спочатку?
Нехай на першій автостоянці було х машин, тоді на другій автостоянці (х * 3) машин.
Коли з другої автостоянці перевели 12 автомобіля, (х * 3) – 12, на першу (х +12), то машин на стоянках стало порівну. Складемо рівняння.
(х * 3) – 12 = х +12
3х – 12 = х + 12
3х – х = 12 + 12
2х = 24
х = 24 : 2
х = 12
На першій стоянці спочатку було 12 машин.
На другій стоянці спочатку було 12 * 3 = 36 машин.
Відповідь: 1. На першій стоянці спочатку було 12 машин.
2. На другій стоянці спочатку було 36 машин.
1) Взаимно простые числа - такие, что не имеют общих делителей, кроме 1. Для них НОК - просто произведение:
3, 4: НОК(3, 4) = 12
3, 7: НОК(3, 7) = 21
3, 8: НОК(3, 8) = 24
4, 7: НОК(4, 7) = 28
4, 9: НОК(4, 9) = 36
6, 7: НОК(6, 7) = 42
7, 8: НОК(7, 8) = 56
7, 9: НОК(7, 9) = 63
8, 9: НОК(8, 9) = 72
2) Эти числа должны иметь вид x, n*x. Максимальное число, на которое делится каждое из них, равно x, а минимальное число, которое делится на каждое из них равно n*x.
3, 6: НОД(3, 6) = 3; НОК(3, 6) = 6
3, 9: НОД(3, 9) = 3; НОК(3, 9) = 9
4, 8: НОД(4, 8) = 4; НОК(4, 8) = 8
3) Сюда подойдут все пары, выписанные в пункте 2. Остальные пары:
4, 6: НОД(4, 6) = 2; НОК(4, 6) = 12
6, 8: НОД(6, 8) = 2; НОК(6, 8) = 24
6, 9: НОД(6, 9) = 3; НОК(6, 9) = 18
Пример вычисления для НОД и НОК пары 6 и 9:
Раскладываем на простые множители: 6 = 2 * 3, 9 = 3 * 3
НОД - произведение всех простых множителей, входящих одновременно в оба разложения. НОД(6, 9) = 3
НОК - произведение всех простых множителей, входящих хотя бы в одно разложение. НОК(6, 9) = 2 * 3 * 3 = 18.
Для упрощения жизни можно заметить, что для пары чисел x и y верно равенство: НОД(x, y) * НОК(x, y) = xy. Тогда, например, вычислив, что НОД(6, 9) = 3, сразу находим, что НОК(6, 9) = 6 * 9 / НОД(6, 9) = 54 / 3 = 18