Пусть v - скорость 3-го велосипедиста, тогда второго - 35*v/21= 5*v/3, а первого - 35*v/15 = 7*v/3. Значит, когда третий велосипедист проедет 1 круг, второй - 5/3 круга. а первый - 7.3 круга. Нас интересует, когда все они окажутся в точке старта. А в этот момент все они пройдут целое число кругов. Когда третий велосипедист пройдёт 2 круга, тогда второй - 10/3 круга, а первый - 14/3 круга, т.е. при в этом случае они не встречаются. А вот когда третий пройдёт 3 круга, тогда второй - 5 кругов, а первый - 7. Так как третий проходит 3 круга за 35*3=105 минут, то они окажутся вместе через 105 минут = 1 ч. 45 мин.
Замечание: задача по сути свелась к нахождению наименьшего общего кратного чисел 15, 21 и 35, которым является число 105.
А) sinxcosx+√3 cos^2x=0 cosx(sinx+√3cosx)=0 произведение двух сомножителей равно нулю тогда, когда хотя бы один из множителей равен 0, а другой при этом существует cosx=0 x=Π/2+Πn, n€Z sinx+√3cosx=0 | : на cosx tgx+√3=0 tgx=-√3 x=-Π/3+Πk, k€Z ответ: -Π/3+Πk, k€Z; Π/2+Πn, n€Z б) cos2x+9sinx+4=0 1-2sin^2x+9sinx+4=0 -2sin^2x+9sinx+5=0 Пусть t=sinx, где t€[-1;1], тогда -2t^2+9t+5=0 D=81+40=121 t1=-9-11/-4=5 посторонний корень t2=-9+11/-4=-1/2 Вернёмся к замене sinx=-1/2 x1=-5Π/6+2Πn, n€Z x2=-Π/6+2Πn, n€Z ответ: -5Π/6+2Πn, -Π/6+2Πn, n€Z