Предположим, что . Тогда и
. Проверим последнее утверждение.
Данное произведение — это произведение трёх последовательных чисел, значит, один из множителей обязательно делится на 3. Так как p простое и больше 3, p-1 и p+1 чётны. Докажем, что произведение p-1 = 2k и p+1 = 2k+2 (k ∈ N) делится на 8:
. Оно, очевидно, делится на 4. Также оно делится ещё на 2, так как одно из чисел k и k+1 обязательно чётное.
.
Однако из этого не обязательно следует, что и . Но p > 3 и p — простое, значит, p не содержит множителей числа 24, то есть на 24 может делиться только
, что и требовалось доказать.
Х - время мастера
Х + 25 - время ученика
15/45 * Х = 15/60 * (Х + 25)
60Х - 45Х = 1125
15Х = 1125
Х = 1125 : 15
Х = 75
75 - время мастера
15/45 * 75 = 25 (деталей) - должен был выполнить мастер
75 + 25 = 100 - время ученика
15/60 * 100 = 25 (деталей) - должен выполнить ученик
А задание у них одинаковое. Значит, решение верно.