Одна бригада рабочих заасфальтировала 5 км 060 м шоссе,другая бригада на 2км 280м больше.Осталось покрыть асфальтом 965 м шоссе .Какой длины шоссе должны были заасфальтировать эти бригады?
Решение:1) 5.060+2.280=7.340(м) - заасфальтировала вторая бригада.2) 5.060+7.340=12.400(м)3)12400+965=13365(м)ответ:13 км 365 м. 13 км 365 м должны были заасфальтировать эти бригады!1 бригада 5 км 060 м2 бригада 5 км 060 м+2 км 280 м= 7 км 340 м осталось 965 мдве бригады 5км060м+7км340м=12км400м12км400м+965м=13км365мЧисла разделяются на классы. Целые положительные числа - N = {1, 2, 3, … } - составляют множество натуральных чисел. Зачастую и 0 считают натуральным числом.
Множество целых чисел Z включает в себя все натуральные числа, число 0 и все натуральные числа, взятые со знаком минус: Z = {0, 1, -1, 2, -2, …}.
Каждое рациональное число x можно задать парой целых чисел (m, n), где m является числителем, n - знаменателем числа: x = m/n. Эквивалентным представлением рационального числа является его задание в виде числа, записанного в позиционной десятичной системе счисления, где дробная часть числа может быть конечной или бесконечной периодической дробью. Например, число x = 1/3 = 0,(3) представляется бесконечной периодической дробью.
Числа, задаваемые бесконечными непериодическими дробями, называются иррациональными числами. Таковыми являются, например, все числа вида vp, где p - простое число. Иррациональными являются известные всем числа и e.
Объединение множеств целых, рациональных и иррациональных чисел составляет множество вещественных чисел. Геометрическим образом множества вещественных чисел является прямая линия - вещественная ось, где каждой точке оси соответствует некоторое вещественное число, так что вещественные числа плотно и непрерывно заполняют всю вещественную ось.
Плоскость представляет геометрический образ множества комплексных чисел, где вводятся уже две оси - вещественная и мнимая. Каждое комплексное число, задаваемое парой вещественных чисел, представимо в виде: x = a+b*i, где a и b - вещественные числа, которые можно рассматривать как декартовы координаты числа на плоскости.
x+x+1=9
2x=9-1
2x=8
x=8:2
x=4
4+1=5(км.ч)
ответ:5;4 км.ч