Если из бревна выпиливать брус, то получися, что окружность описана вокруг прямоугольника. Записываем формулу для вычисления радиуса описанной вокруг прямоугольника окружности:
Т.к. стороны относятся как 2:1, то можно сделать вывод о том, что длина прямоугольника в 2 раза больше ширины. Тогда: a=2b S=a*b 2b*b=1000 b²=500 b=√500=±10√5
Длина (имеется в виду единица измерения) отрицательной не может быть, поэтому корень b=-10√5 исключаем.
Решим задачу алгебраическим с уравнения) 60 тетрадей=840 листов бумаги один вид тетради=по 12 листов второй вид тетради=по 18 листов Найти: тетрадей первого вида=? штук тетрадей второго вида=? штук Решение Пусть х - количество тетрадей первого вида, а у - второго вида. По условиям задачи х+у=60 (| уравнение)
На тетради первого вида использовали 12*х листов бумаги, а второго вида 18у листов бумаги. По условиям задачи 12х+18у=840 (|| равнение)
Решим систему неравенств (методом сложения): {х+у=60 (*-12) {12х+18у=840
{-12x-12y= -720 +{12х+18у=840 =(-12х+12х)+(-12у+18у)=-720+840 6у=120 у=120:6 у=20 (тетрадей второго вида)
у+х=60 20+х=60 х=60-20 х=40 (тетрадей первого вида) ответ: тетрадей первого вида 40 штук (по 12 листов), а второго вида 20 штук (по 18 листов)
Проверим: 12*40+18*20= 480+360=840 листов
или (если систему уравнений ещё не проходили) Пусть х - тетрадей по 12 листов. Тогда количество тетрадей по 18 листов равно: 60-х. 12*х листов необходимо для изготовления первого вида тетрадей (по 12 листов), а 18(60-х) листов необходимо для изготовления второго вида тетрадей (по 18 листов). Всего на 60 тетрадей ушло 840 листов: 12х+18(60-х)=840 12х+1080-18х=840 -6х=840-1080 -6х=-240 6х=240 х=240:6 х=40 (тетрадей первого вила) 60-х-60-40=20 (тетрадей второго вида)