Для того, чтобы у выражение (2a2b - 3ab2 + b) - (a2b - 2ab2 + 2b) мы применим алгоритм упрощения выражения.
Давайте традиционно мы начнем с открытия скобок. Для открытия скобок применим правила открытия скобок перед которыми стоит плюс или не стоит никакого знака и правило открытия скобок перед которыми стоит минус.
(2a2b - 3ab2 + b) - (a2b - 2ab2 + 2b) = 2a2b - 3ab2 + b - a2b + 2ab2 - 2b.
Далее приведем подобные:
2a2b - 3ab2 + b - a2b + 2ab2 - 2b = 2a2b - a2b + 2ab2 - 3ab2 + b - 2b = a2b - ab2 - b.
Выясним, составляют ли площади квадратов бесконечно убывающую геометрическую прогрессию.
Если сторона наибольшего квадрата равна 56 см, то сторона вписанного в него квадрата равна 282√ см, следующая 28 см, ...
Если сторона квадрата равна a, то его диагональ равна a2√.
Сторона вписанного квадрата равна половине диагонали...
Площадь квадрата равна a2.
Площади квадратов образуют последовательность: 562; (28⋅2√)2; 282;...
или 3136; 1568; 784; ...
Проверим, является ли эта последовательность бесконечно убывающей геометрической прогрессией.
b2b1=15683136=0,5b3b2=7841568=0,50,5<1,q=0,5
Используем формулу суммы бесконечно убывающей геометрической прогрессии: S∞=b11−q=31361−0,5=31360,5=6272 см2
Сумма площадей всех квадратов равна 6272 см2
Пошаговое объяснение:
(2х+50)=2000:2
2х+50=1000
2х=1000-50
х=475
---------------------
61-(3х+51)=1
3х+51=61-1
3х+51=60
3х=9
х=3
-----------------------
(8х-12)*15-200:4=10
(8х-12)*15=10+50
(8х-12)*15=60
8х-12=60:15
8х-12=4
8х=4+12
8х=16
х=2
--------------------
(49х+11)*5-293=7
(49х+11)*5=7+293
49х+11=300:5
49х+11=60
49х=60-11
49х=49
х=1
---------------------------------------
(5х+70):120+2=3
(5х+70):120=1
5х+70=1*120
5х+70=120
5х=120-70
5х=50
х=10