Пошаговое объяснение:
Докажите, что если a ≥ 0, b ≥ 0, то b(a² + 1) + a(b² + 1) ≥ 4ab. При
каких a и b имеет место равенство?
b(a² + 1) + a(b² + 1) ≥ 4ab
ba² + b + ab² + a - 4ab ≥ 0
(ba² + b - 2ab) + (ab² + a - 2ab) ≥ 0
b(a² - 2a + 1) + a(b² - 2b + 1) ≥ 0
b(a - 1)² + a(b - 1)² ≥ 0
первое слагаемое ≥ 0 поскольку b>=0 по условию
и (a - 1)² ≥ 0 как квадрат числа
второе слагаемое ≥ 0 поскольку a>=0 по условию
и (b - 1)² ≥ 0 как квадрат числа
сумма двух неотрицательных чисел ≥ 0
неравенство доказано
b(a - 1)² + a(b - 1)² ≥ 0
равенство нулю возможно если каждое из неотрицательных
слагаемых одновременно равны нулю
a=b=0
или a=b=1
х+9х=50
х=5
т.к 0тец 9х,то 9*5=45
Дочке - х лет, тогда сыну 3х лет, отцу - 9х лет. Так как дочке и отцу вместе 50 лет, то х+9х=50, 10х=50, х=5. Дочке - 5 лет, сыну - 15 лет, отцу - 45 лет.