Примем расстояние между причалами за 1. 1 : 18 = 1/18 (усл. раст./ч) - условная скорость плота, а значит, течения реки. Пусть х часов - время, за которое катер проплывет расстояние АВ по озеру. 1 : х = 1/х - условная скорость катера по озеру (в стоячей воде). (1/х - 1/18) - условная скорость катера против течения реки. 1 : (1/х - 1/18) = 2 2(1/х - 1/18) = 1 2/х - 2/18 = 1 (36 - 2х) / 18х = 1 36 - 2х = 18х 18х + 2х = 36 20х = 36 х = 36 : 20 х = 1,8 (ч) ответ: за 1,8 часа катер проплывет расстояние АВ по озеру.
Примем расстояние между причалами за 1. 1 : 18 = 1/18 (усл. раст./ч) - условная скорость плота, а значит, течения реки. Пусть х часов - время, за которое катер проплывет расстояние АВ по озеру. 1 : х = 1/х - условная скорость катера по озеру (в стоячей воде). (1/х - 1/18) - условная скорость катера против течения реки. 1 : (1/х - 1/18) = 2 2(1/х - 1/18) = 1 2/х - 2/18 = 1 (36 - 2х) / 18х = 1 36 - 2х = 18х 18х + 2х = 36 20х = 36 х = 36 : 20 х = 1,8 (ч) ответ: за 1,8 часа катер проплывет расстояние АВ по озеру.
1) найдем вершины параболы по формуле
-b/2a=-(-5)/(-2*2)=5/4=-1.25=
y(-1.25)=2*(-1.25)²-5*(-1.25)-2=3.125+6.25-2=7,375=
(-1,25; 7,375) - вершины параболы
2) Найдем нули функции
-2x²-5x-2=0
D=(-5)²-4*(-2)*(-2)=25-16=9
x1=(5+3)/-2=-4; x2=(5-3)/-2=-1
(-4;0) и (-1;0)
y(0)=-2*0²-5*0-2=-2; (0;-2)
Теперь по данным координатам:
(-1,25; 7,375) - вершины параболы
(-4,0), (-1,0), (0,-2)