Пусть сторона квадратного листа картона равна х см. Тогда после того как от листа отрезали 2 см. одна из строн стала равна (х-2) см., а площадь получившегося прямоугольника: х*(х-2)=120 кв. см.
Решим полученное уравнение:
х*(х-2)=120
x^2-2x=120 (х^2 – означает х в квадрате)
x^2-2x-120=0
Найдем дискриминант квадратного уравнения
D=b^2-4ac=4-4*1*-120=484
Так как дискриминант больше нуля то, квадратное уравнение имеет два корня:
x1=(-b+√D)/(2a)=(2+√484)/(2*1)=12
x2=(-b-√D)/2a=(2-√484)/(2*1)=-10
Второй корень х2=-10 не подходит, так как сторона не может быт отрицательной.
Значит:
ответ: сторона исходного листа картона равна 12 см.
S Δ = 1/2×6×9 =27 cм²
S О = πR² = 3,14×2.2² =3,14×4,84 = 15,1976 см²
S фигуры =27 - 15,1976 =11,8024 ≈11,8 см²