Для решения данного задания необходимо найти размер параллелепипеда.
Рассмотрим условие и проанализируем его;
По условию нам известно что прямоугольный параллелепипед разрезали на 24 кубика и у 12 кубиков окрашены две грани. Две грани у кубиков могут быть окрашены если они находились на ребре параллелепипеда за исключением вершин.
Вспомним что у прямоугольного параллелепипеда всего 12 ребер;
Распределить кубики по ребрам можно следующим образом;
4 ребра по 2, 4 ребра по 1;
Тогда стороны равны: 4; 3; 2.
Пошаговое объяснение:
21 грамм краски
Пошаговое объяснение:
Куб состоит из 6 граней. Необходимо просчитать количество свободных граней фигуры для покраски.
Фигура состоит из 5 собранных кубов, где крайних - 3 шт., и средних - 1 шт., центральный - 1 шт.
Для покраски граней куба:
- крайнего 5 граней * 3 = 15 граней;
- среднего 4 грани * 1 = 4 грани;
- центрального 3 грани * 1 = 3 грани.
Всего граней для покраски равно: 15 + 4 + 3 = 21 грани
Из расчета расхода 1 грамм краски на одну грань, получаем расход краски: 21 * 1 = 21 грамм.
a^3 + b^3 = 1547
a = 17 - b
(17 - b)^3 + b^3 = 1547
(17 - b + b)((17 - b)^2 - b(17 - b) + b^2) = 1547
17(289 - 34b + b^2 - 17b + b^2 + b^2) = 1547
289 - 51b + 3b^2 = 1547/17
3b^2 - 51b + 289 - 91 = 0
3b^2 - 51b + 198 = 0
b^2 - 17b + 66 = 0
D = (-17)^2 - 4*66 = 25
b1 = (17 + 5)/2 = 22/2 = 11
b2 = (17 - 5)/2 = 12/2 = 6
a1 = 17 - 11 = 6
ответ 11 и 6