М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
bocmanlera
bocmanlera
22.09.2022 22:15 •  Математика

1.выполните действие 2/9+1/9 1/8+3/8 7/12-5/12 8/21-1/21 1(целая)- 1/7 1(целая)-3/20 2.сложите дроби 1/8+3/7 4/5+1/3 1/2+5/6 4/15+2/5 3/8+3/20 8/9+1/6

👇
Ответ:
Katya552002
Katya552002
22.09.2022
2/9+1/9=3/9=1/3
1/8+3/8=4/8=1/2
7/12-5/12=2/12=1/6
8/21-1/21=7/21=1/3
1-1/7=7/7-1/7=6/7
1-3/20=20/20-3/20=17/20

1/8+3/7=7/56+24/56=31/56
4/5+1/3=12/15+5/15=17/15=1 2/15
1/2+5/6=3/6+5/6=8/6=4/3=1 1/3
4/15+2/5=4/15+6/15=10/15=2/3
3/8+3/2015/40+6/40=21/40
8/9+1/6=16/18+3/18=19/18=1 1/18
4,8(27 оценок)
Открыть все ответы
Ответ:
j5022778
j5022778
22.09.2022

ответ: x∈[-2;4].

Пошаговое объяснение:

1) Составляем выражение для отношения a(n+1)/a(n), где a(n+1) и a(n) - соответственно n+1 - й и n - ный члены ряда: a(n+1)/a(n)=(x-1)*(3*n-1)²/[3*(3*n+2)²].

2) Составляем выражение для модуля этого отношения. Так как (3*n-1)²>0 и 3*(3*n+2)²>0, то /a(n+1)/a(n)/=/x-1/*(3*n-1)²/[3*(3*n+2)²].

3) Находим предел этого выражения при n⇒∞: lim /a(n+1)/a(n)/=1/3*/x-1/, так как lim (3*n-1)²/[3*(3*n+2)²]=1/3.

4) Составляем и решаем неравенство 1/3*/x-1/<1. Оно имеет решение -2<x<4, то есть x∈(-2;4). Поэтому -2<x<4 - интервал сходимости ряда.

5)  Остаётся исследовать поведение ряда на концах этого интервала.

а) если x=-2, то ряд принимает вид (-1)^n/[(3*n-1)²]. Так как /(-1)^n/[(3*n-1)²]/=1/[(3*n-1)²]<1/n², а ряд обратных квадратов сходится, то в точке x=-2 данный ряд тоже сходится, причём - абсолютно.

б) если x=4, то ряд принимает вид 1/[(3*n-1)²]. Как только что было показано, данный ряд сходится - значит, данный ряд сходится и в этой точке. Поэтому областью сходимости ряда является интервал x∈[-2;4].    

4,5(65 оценок)
Ответ:
Kaspiyskaya95
Kaspiyskaya95
22.09.2022

ответ: x∈[-2;4].

Пошаговое объяснение:

1) Составляем выражение для отношения a(n+1)/a(n), где a(n+1) и a(n) - соответственно n+1 - й и n - ный члены ряда: a(n+1)/a(n)=(x-1)*(3*n-1)²/[3*(3*n+2)²].

2) Составляем выражение для модуля этого отношения. Так как (3*n-1)²>0 и 3*(3*n+2)²>0, то /a(n+1)/a(n)/=/x-1/*(3*n-1)²/[3*(3*n+2)²].

3) Находим предел этого выражения при n⇒∞: lim /a(n+1)/a(n)/=1/3*/x-1/, так как lim (3*n-1)²/[3*(3*n+2)²]=1/3.

4) Составляем и решаем неравенство 1/3*/x-1/<1. Оно имеет решение -2<x<4, то есть x∈(-2;4). Поэтому -2<x<4 - интервал сходимости ряда.

5)  Остаётся исследовать поведение ряда на концах этого интервала.

а) если x=-2, то ряд принимает вид (-1)^n/[(3*n-1)²]. Так как /(-1)^n/[(3*n-1)²]/=1/[(3*n-1)²]<1/n², а ряд обратных квадратов сходится, то в точке x=-2 данный ряд тоже сходится, причём - абсолютно.

б) если x=4, то ряд принимает вид 1/[(3*n-1)²]. Как только что было показано, данный ряд сходится - значит, данный ряд сходится и в этой точке. Поэтому областью сходимости ряда является интервал x∈[-2;4].    

4,4(14 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ