Тело, ограниченное поверхностями x + 2y + z - 2 = 0, x = 0, y = 0, z = 0, это треугольная пирамида, образованная пересечением заданной плоскости трёхгранного угла.
Уравнение плоскости переведём в уравнение "в отрезках".
x + 2y + z = 2. Делим обе части на 2.
(x/2) + (y/1) + (z/2) = 1.
Эти отрезки - координаты вершин на осях.
Находим векторы по координатам точек:
AB = {Bx - Ax; By - Ay; Bz - Az} = {0 - 2; 1 - 0; 0 - 0} = {-2; 1; 0}
AC = {Cx - Ax; Cy - Ay; Cz - Az} = {0 - 2; 0 - 0; 2 - 0} = {-2; 0; 2}
AD = {Dx - Ax; Dy - Ay; Dz - Az} = {0 - 2; 0 - 0; 0 - 0} = {-2; 0; 0}
V = 1/6 |AB · [AC × AD]|
Найдем смешанное произведение векторов:
AB · (AC × AD) =
ABx ABy ABz
ACx ACy ACz
ADx ADy ADz
=
-2 1 0
-2 0 2
-2 0 0
= (-2)·0·0 + 1·2·(-2) + 0·(-2)·0 - 0·0·(-2) - 1·(-2)·0 - (-2)·2·0 = 0 - 4 + 0 - 0 - 0 - 0 = = -4
Найдем объем пирамиды:
V = 1/6 · 4 = 2/ 3
(корень из 191)/4
Пошаговое объяснение:
По формуле Герона площадь треугольника со сторонами a, b, c равна:
S=корень(p*(p-a)*(p-b)*(p-c)), где р - полупериметр ((a+b+c)/2)
рассмотрим подкоренное выражение:
((a+b+c)/2)*((-a+b+c)/2)*((a-b+c)/2)*((a+b-c)/2)
Знаменнатель этого выражения равен 16, раскроем скобки в числителе:
(-a^2+a*b+a*c-a*b+b^2+b*c-a*c+b*c+c^2)*(a^2+a*b-a*c-a*b-b^2+b*c+a*c+b*c-c^2)=(-a^2+b^2+b*c+b*c+c^2)*(a^2-b^2+b*c+b*c-c^2)=(2*b*c+(b^2+c^2-a^2))*(2*b*c-(b^2+c^2-a^2))=(2*b*c)^2-(b^2+c^2-a^2)^2
подставим занчения из условия, получим числитель подкоренного выражения: (2*(корень 180))^2-(10+18-5)^2=(4*180)-23^2=720-529=191
Таким образом, площадь треугольника S=корень(191/16)=(корень 191)/4
4+12 наберется 2 бассейна, поэтому разделить сумму на 2