Дано:
НABCD - пирамида
ABCD - прямоугольник
AB=CD=10см
AD=ВС=18см
НO - высота
НO=12cм
S(бок)-?
S(полн)-?
S(бок)=S(AНB)+S(BНC)+S(CНD)+S(AНD). Так как треугольники AНB и CНD, а также BНC и AНD попарно равны, то S(бок)=2S(BНC)+2S(CНD).
, где НК - высота, проведенная к стороне ВС. НК можно найти как гипотенузу прямоугольного треугольника НОК, где ОК - половина стороны СD.
.
Аналогично, , где НN - высота, проведенная к стороне СD.
Получаем:
Площадь полной поверхности равна сумме площади боковой поверхности и площади основания:
ответ: 384см²; 564см²
Пошаговое объяснение:
Разложим числа на простые множители:
1512 = 2 * 2 * 2 * 3 * 3 * 3 * 7
1008 = 2 * 2 * 2 * 2 * 3 * 3 * 7
Чтобы найти НОД, нужно разложить числа на простые множители и найти произведение их совместных простых множителей, взятых с наименьшим показателем степени.
НОД (1512; 1008) = 2 * 2 * 2 * 3 * 3 * 7 = 504 - наибольший общий делитель
1512 : 504 = 3 1008 : 504 = 2
Чтобы найти НОК, нужно разложить числа на простые множители и найти произведение всех простых множителей, взятых с наибольшим показателем степени.
НОК (1512; 1008) = 2 * 2 * 2 * 2 * 3 * 3 * 3 * 7 = 3024 - наименьшее общее кратное
3024 : 1512 = 2 3024 : 1008 = 3