Рост буратино-1метр4дм а длина его носа раньше была 9 см.каждый раз,когда буратино обманывал,длина его носа удваивалась.как только длина его носа стала больше его роста он перестал обманывать.сколько раз он обманул?
Чтобы определить наибольшую степень числа 10, на которую делится число n!=1*2*3...n, надо сначала найти наибольшую степень числа 5, на которую оно делится. Каждое пятое число 5, 10, 15, 20, 25, 30 и т. д. делится на 5, всего таких чисел, не превосходящих числп n, Цел [n/5] (Целое, ближайшее к n/5). Однако некоторые мз них делятся на вторую степень числа 5, а именно 25, 50, 75 100 и т. д. ; таких чисел существует Цел [n/25]. Некоторые из них делятся на третью степень числа 5, т. е на 125: 125, 250, 375 и т. д. ; их существует Цел [n/125] и т. д. Это показывает, что число делителей числа n! на степени 5 таково: Цел [n/5]+Цел [n/25]+Цел [n/125]+...(1) В этой сумме достаточно выписать лишь те члены, в которых целое частное не равно нулю (числитель не меньше знаменателя) . Точно такие же рассуждения можно провести для степеней 2. Количество делителей n! на степени 2: Цел [n/2]+Цел [n/4]+Цел [n/8]+... Ясно что это выражение не меньше выражения (1), т. е. в числе n! каждому множителю 5 можно подобрать множитель 2. Таким образом, выражение (1) дает величину степени числа 10, делящей n!, которая равна числу нулей, стоящих в конечной части записи числа. Для n=100. Цел [100/5]=20, Цел [100/25]=4, Цел [100/125]=0, поэтому 100! заканчивается 24 нулями.
Чтобы определить наибольшую степень числа 10, на которую делится число n!=1*2*3...n, надо сначала найти наибольшую степень числа 5, на которую оно делится. Каждое пятое число 5, 10, 15, 20, 25, 30 и т. д. делится на 5, всего таких чисел, не превосходящих числп n, Цел [n/5] (Целое, ближайшее к n/5). Однако некоторые мз них делятся на вторую степень числа 5, а именно 25, 50, 75 100 и т. д. ; таких чисел существует Цел [n/25]. Некоторые из них делятся на третью степень числа 5, т. е на 125: 125, 250, 375 и т. д. ; их существует Цел [n/125] и т. д. Это показывает, что число делителей числа n! на степени 5 таково: Цел [n/5]+Цел [n/25]+Цел [n/125]+...(1) В этой сумме достаточно выписать лишь те члены, в которых целое частное не равно нулю (числитель не меньше знаменателя) . Точно такие же рассуждения можно провести для степеней 2. Количество делителей n! на степени 2: Цел [n/2]+Цел [n/4]+Цел [n/8]+... Ясно что это выражение не меньше выражения (1), т. е. в числе n! каждому множителю 5 можно подобрать множитель 2. Таким образом, выражение (1) дает величину степени числа 10, делящей n!, которая равна числу нулей, стоящих в конечной части записи числа. Для n=100. Цел [100/5]=20, Цел [100/25]=4, Цел [100/125]=0, поэтому 100! заканчивается 24 нулями.